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James A.   Mullen and David Middleton 
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Cambridge, Massachusetts 

Abstract 

Nongaussian noise occurs sufficiently often that a study of its points 
of similarity to and difference from gaussian noise is desirable .   This re- 
port considers an important sub-class of non-normal statistics, viz., nearly 
normal noise.    A new form for the nearly gaussian probability densities has 
been found; this is discussed, compared to the conventional Edgeworth series, 
and related to earlier work.    Next a survey of physical noise sources is made 
in order to classify the statistical nature of the noise that each produces. The 
rectification of nearly normal noise and a c-w signal in a half-wave  vth- 
law detector is analyzed and the correlation functions of the output obtained. 
The behavior of the output is compared to the corresponding results for 
gaussian noise of the same input intensity.    For the linear and square-law 
detectors, the cases of prime interest, detailed figures and a number of more 
tractable formulas are given.    Finally, the problem of finite averaging is 
briefly considered. 

I 

Introduction 

This report considers the rectification of a-m signals and nongaussian 

noise.    The corresponding problem in which the noise is gaussian is particu- 

larly important because moat noise sources are gaussian ones and because 

the normal distribution is easy to handle analytically.    Quite properly, early 

work considered gaussian noise nearly exclusively.    Nonetheless, certain 

types of noise do not have normal distributions, so that an analysis of the 

non-normal case is desirable, both to apply directly to problems where it is 

applicable, and to help to indicate in uncertain cases how critical the assump- 

tion of gaussian statistics is.     We note that because of the presence of a non- 

-1- 
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linear element in the  receiver, viz., the rectifier, the output moments 

depend on the entire input distributions, so that the input statistics affect 

even the simplest of the output properties. 

The noise of the present paper is nearly gaussian so that the proba- 

bility distributions can be expanded asymptotically in terms of the corre- 

sponding normal probability distribution and its derivatives.     This is the 

well-known Edgeworth series [ l] ; however, the form that we have found 

most useful, which involves derivatives with respect to the second moments 

of the distribution, has apparently not been mentioned before.    Pearson [2| 

used the idea for a special distribution in order to facilitate deriving the 

usual Edgeworth series and Crofton [3]  has obtained similar equalities 

between different kinds of derivatives  in a  separate derivation  of the 

Edgeworth series.     The application of our results depends partly on the 

fact that, after passing through the tuned stages of the receiver, the noise 

is narrow-band.    We have obtained relations connecting the distributions 

of the envelope and phase of the noise wave to those of the instantaneous 

value, which also appear to be new. 

A survey of physical sources of noise has been made to determLje, 
i 

whenever possible, whether the noise produced is gaussian or nongaussian 

and to suggest noise models for use in the analysis of the detector.    The 

correlation function at the output of an idealized a-m receiver with a 

vth-law rectifier has been found when the input is a nearly normal noise 

and a c-w signal.    The result is fairly intractable in general, but formulas 

have been obtained.    Graphs have been drawn for the two most important 

cases, linear and square-law rect: "iers, with various representative types 

of noise inputs.    The general effect of nongaussian noise compared to 

gaussian     -use of the same input power has been found for both the output 

power and the output correlation function.    Finally, the effect of averaging 

the output over a finite time has been examined, again qualitatively, in general, 

and '.v.'h explicit reBult.s and figures for the quadratic detector. 
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II 

Probability Distributions of Nearly Gaussian Noise 

2. 1     General Properties of Probability Distributions 

A sufficient characterization of systems containing noise requires a 

statistical description of the noise, viz., the joint probability densities of 

the noise at a set of different values of the time, or alternatively, know- 

ledge of the ensemble from which the sample functions actually observed are 

drawn [4,5,6].    The noise processes with which this report is concerned 

are Markoffian [ 7,8] , which means that knowledge of the joint distribution 

at two times is enough to describe the process completely.    Thus two distri- 

butions will be needed for each variable. 

W,(y,t)dy = the probability that y will lie in the interval 
y, y and dy at time t and, 

W2^yrV y2,t;2^dyldy2. = the Joint pro1 
lie in y,, y, + dy.   at time U, and that 

•obability that y will 
y will lie in y?) 

y? + dy'   aftime't,. 

As the time difference between the two times of observation is increased, 

the dependence of y? on y. is lessened until with sufficient separation, y, and 

y,  are independent; that is 

lim 
t-^oo W2<yl'V y2't2 stl+t> = Wjtyj.tjJWjly^). (2.1) 

The characteristic function of the noise is the Fourier transform of the 

probability distribution [9,10] . 

r°r        i5,y, + i52y2 F2<Vl;V2
)= e W2(y1.t1;y2,t2)dy1dy2. (2.2) 

This   function is introduced because problems are often simpler when 

phrased in terms of transforms than when stated directly in terms of the 

probability densities. 

A further important concept is that of stationarity [11] , which means 

- 
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that thp distributions are invariant under a linear shift of all the times 

of observation.    W. thus does not depend on t, and W? depends only on 

the time difference t   -t.. 

An important set of parameters associated with a distribution are 

its moments, defined by 

Because of its particular importance, |Aii(t) is given a special symbol, 

R(t), and a name, the correlation function.    It serves as a simple but not 

entirely reliable test of independence of the noise values at two times sepa- 

rated by an interval t.*   Also, the spectral distribution of the noise power 

can be found from the correlation function by using ths Wiener-Khintchine 

theorem [ 12,13] , 

a 

I 
CO 

W(f)      4    /      R(t)cosutdt. 

o 

I 
(2.4) 

co 

R(t) =     /        W(f)coswtdt. 

'o 

When all the Kth-order moments exist, the characteristic function 

possesses an expansion in terms of the moments [ 9,10] , 

F2<Si'B2
;t>= <exP(i51y1+ iS2y2)>aVi 

M=0 
m+n=M 

A different set of parameters of the distribution are the semi-invariants, 

defined from the expansion of the logarithm of the characteristic function 

[9,10]. 

• It is in fact a "wide sense" test for independence, in the sense of Doob, sec 2.3. 
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°°      \   (t) 

InF^^.^-.t) =Y^    iHTI-^ASz)  l- (2-6) 
K=l 

k+l=K 

By comparing the two power series, relations between the moments and 

semi-invariants can be found. 

The sources of noise considered in the succeeding section are 

Markoffian and stationary; furthermore, they are representative of Poisson 

ensembles, a particular class of distributions of sums of independent random 

variables, 

2. 2   The Poisson ensemble 

The Poisson noise ensemble is composed of sums of independent 

variables with common distributions and uniformly distributed times of 

occurrence, t., viz., 

K 

V(t;K,{tj},=^v.(t-t.). 
j=l 

Physically, the basic random variables represent pulses produced 

randomly by a noise source.    These hypotheses imply that the number of 

pulses occurring, K, is a random variable with a Poisson distribution [ 13,14] , 

so that K, as well as the set of t.'s, is an ensemble parameter.    The vari- 

ability of K distinguishes the Poisson model from the random walk problem 

where K is a fixed, known number [ 2,15] .    This difference is not a necessary 

consequence of either model.    However, with superposed pulses, the natural 

condition of uniformly distributed occurrence times leads at once to a distri- 

bution of K.    In a random walk, on the other hand, a fixed number of steps 

seems more natural.    In this paper, "random walk" and "Poisson" models 

will always refer to ensembles with a fixed or variable K, respectively. 

The distributions of V can now be derived following Middleton [16] . 

Because of the independence between pulses the characteristic function 

for V when K pulses occur is the Kth power of the characteristic function for 

F2V<V52>K = rF2v<V$2>]K <2-7> 
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The desired characteristic function is the above one averaged over the values 

of K. 

00      K f ^ 

K=0 L 

(2.8) 

Here y is the average pulse density, the average number of pulses per 

second times the average duration of a pulse: 

The above equations exhibit a. consequence of the different ensembles for 

Poisson or random walk models.    In the Poisson case, the semi-invariants of 

V equal y times the moments of v; in the random walk (Eq.   2. 7), the semi- 

invariants of V equal y times the semi-invariants of v, i.e. , the fixed value 

of K is y. 

In the general model, individual pulses are themselves random variables 

with distributions of amplitude, phase, duration and occurrence time, viz. , 

v(t-t') = a h(p[t-t'j;   r) cos [w   (t-f) + ijj]    . (2.9) 

Here a is the amplitude of the pulse; h, its shape factor, which depends 

on the occurrence time, t', and the duration, r(the time variable has been 

normalized by dividing by the mean duration r =  1$ ); and >\i is the phase of 

the pulse.    Most systems in which noise is important are spectrally narrow- 

band; accordingly v(t) has been written as a slowly varying envelope factor, 

h(pt;r) times a rapidly varying "carrier" wave.    In terms of these random 

variables, the characteristic function for a single pulse is 

F2v(^1J2) = /da1da2dr1dr2di|;1d^2dpt,1dpt,2dpt1Xw(a1,a2,r1,r2,lti1,v);2>pt1,pt,2) 

exp|ia151h(p[t2-t'1];r1)+ia2^2h(fJ[t-t2];r)|   . (2.10) 

A specific noise source will not usually produce pulses variable in all 

these quantities, so that the problem of evaluating the above integral is not 

so formidable as it may appear. 

The   moments   of a distribution are always of interest; in this paper, 

they , re particularly so since we shall be concerned with nearly gaussian 
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distributions where only the first four sets of moments appear, not the 

general form of the exact distribution. 

For simplicity, let us consider a. noise source that produces pulses at 

random times but with specific amplitude, shape, and phase.    Then the semi- 

invariants of the output are 

\       (t) = y   (a mnx ' / hm(x;r)hn(x+pt;r) cosm(ux/p-4i)cu8n(wox/p- ^ + t^tjda^w, 
J-co 

(2.11) 

where pt, has been set equal to a new variable, x, and t? has been changed to 

tj + t. 

As is justified in Appendix I, because of the narrow-band structure the 

phase may be assumed to be distributed uniformly.    Carrying out the phase 

average first then simplifies the form of X        (t) considerably in specific 

cases.    In general, one has 

X       (t) = 0     m + n odd, rruv ' 

^J1)^^-1)' (2.12) 

which last follows directly from Eq.  (2.7) above, quite independent of the 

narrow-band assumption.    The second and fourth order semi-invariants 

are then 

r~ r\Co 

Xn(t) =v^<(a2      /     h(x;r)h(x + pt; 

CO 

X20 " X02 " Xll{°) - <V   • 

;r)dx> cos w t, = ^>r  (t) cos OJ t = vjjr(t); 

(2.13) 

CO 

X22(t) =Y^<&4 h  (x;r)h  (x + pt;r)dx>      (2 + cos 2w t), 

'-co 

f i        j   < y 

•oo 

X31(t) = X13(-t) =Y^<a       /      hJ (x;r)h(x*pt;r)dx> cos w  t, av o 
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i_X40 = X04 = X31(0) = X22(0>- (2.14) 

It is convenient to separate the low-and high-frequency variations 

in the fourth-order semi-invariants just as, in \ . , (t), the   ty r (t) is distinct 

from the carrier part.    Defining a low-frequency factor yV       (t), so that 

A_(0) = X       (0), we have 'mo' mn' 

\ 22(t) = A22(t)[ 2/3 + 1/3 cos 2w. t] 

X31(t) =A31(t)cosw0t 

(2.15) 

X40     A^o- 

2. 3     Nearly gaussian distributions 

A nearly normal distribution may be asymptotically expanded in terms of the 

limiting gaussian form in inverse powereof y .   To get the asymptotic series, we 

write (2.6 ) as 

F2(Br5rt) = i + 
X40  t4       x3ill)     r      ,- 
4i~ 51 + ~n— 5is 

,     ,  X 22^ 
2 + 2!2! 

*2*; 
-^ i •i>; 

X13(t)   "S *3     X 04*4 -2, 
~3l 5l52+-4T-52  +°TW     > 

Xexpj-^ +2r(t)5152+52l 

(2.16) 

The symbol 0_( y    ) means that, after the transform is taken,  the 
1 _2 

neglected part is of order  y All the semi-invariants are of order y; 

V    is of order   \V   y,  so that 5- ifi °f order y Thus the M = 4terms 
_ 1 * 

are of order  y    ;  the next succeeding terms, M = 6 and the square ofM = 4 

terms, will be of order  y"    (odd order semi-invariants, when not equal to 

zero, introduce fractional powers) [ 17] .    The probability density correi- 

sponding to the above characteristic function is 

4 
W^.V^.t) 1 + 40 

4! 

a4 
—T 

8V 

X31(t) 

"TJ 
l 

a 

8vi39v2 

X 22^> 
2»2!  Z 1 8 vfevj 
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S3
(t)      a 

TT~ 
8V1W2 

r+ "4T 
04   8 

av 
+ o(Y"2) 

exp 
rvj +V^-2V1V2r(t) 

I   2*Wl  - r2 LtL 

2TT WT r2(t) 

(2.17) 

This is the two-dimensional form  of the well-known Edgeworth 

series [ 1]. 

Another form of this probability distribution is possible, in which 

derivatives are taken with respect to the  second moments (for the derivation 

of this result, see Appendix II). 

The characteristic function is 

A40 9 2. 

La^ j       d<\> 2 

2     a 
3 !d^ T: AiM-w^ A 3^4~2 

A22(t)   n 9 2 
3! 

9 2      1 

2 ^r + 2 s^ 
o 

+ o^ Y"2) (2.18) 

X exp   -I^jS2   + 2^rQ(t)J152 cos^t + ^ ^ 3 

4>i - 4>2 ~ 4» 

The probability distribution can be obtained from this by transforming 

the exponential alone. 

The    series (2.18) was first found by Pearson [ 2]  for the first order 

density in the random walk, using the properties of Bessel functions;   but 

apparently it has not previously been extended to any general class of dis- 

tributions.    The only condition needed is that the random variables be iso- 

tropic.    Even if this is not so, a similar series involving also derivatives 

with respect to the first moments may be found.    However, the latter is 

sufficiently involved so that little advantage is to be expected in using it 

rather than the Edgeworth series. 

For moments after a nonlinear  operation, the comparative simplicity 
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in the analysis when the noise possesses a gaussian distribution  is often 

a   strong point in favor of the series of parametric derivatives.   Applying 

the differential operator to the result for (   nonstationary) gaussian noise 

is likely to be involved, but is certainly straightforward.    Furthermore, 

where the narrow-band structure of the output is important, this charac- 

teristic function possesses the very considerable advantage of having the 

high-frequency part appearing only in the exponent, while the Edgeworth 

form has high-frequency terms of different orders scattered about in the 

various semi-invariants as well as in the exponent. 

2, 4     Envelope and phase distributions 

In narrow band problems, it is sometimes more convenient to take 

the slowly varying parts of the noise wave, as the random variables, rather 

than the instantaneous value.    The distributions obtained are more com- 

plicated, but in return this technique entirely eliminates high-frequency 

terms in the probability distribution.    A narrow-band ensemble can be 

written as 

V(t;a,p) = R(t;a)cos[wot -0(t;p)], (2. 19) 

where the envelope and phase are random variables not, in general, in- 

dependent (which means that the ensemble parameters o and fj.are function- 

ally  related).     In terms of in-phase and quadrature components, 

V(t; -y[a,p],6[a,p]) =  X(t;-y) coswj;  + Y(t;6) sinwt. (2.20) 

X and Y are not usually independent either.    It is frequently easier to find 

the distributions of X and Y and afterward, by transforming to polar coordin- 

ates, find the distributions of envelope and phase. 

From the equation above, it is evident that knowledge of the distribu- 

tions of V is equivalent to knowledge of those of X and Y.    The explicit 

connection between these two different representations of the noise wave has 

been found under the condition that the phase is distributed uniformly.* 

*A general four-dimensional distribution has thirty-one non-zero fourth- 
order semi-invariants while the corresponding distribution of V has 
only five.   Finding that a connection between the two distributions is highly 
desirable in the interest of algebraic simplicity alone. 
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In case only the marginal distributions of envelope and phase changes are 

needed, the condition on the phase distribution may be dispensed with.    It 

should be pointed out that, while the fact that V is narrow-band and nearly 

gaussian implies that it is isotropic, because of the high-frequency variations, 

that is not true of the slowly varying components, precisely because the high- 

frequency part has been removed.    Furthermore, while the requirement that 

the phase be uniformly distributed is satisfied for a good many noise sources 

of interest, an almost equal class will not fit this scheme, so that the restric- 

tion is more severe than desirable.    Fortunately, for the detection problem, 

and indeed for all cases where only the low-frequency output is needed, the 

isotropy condition can be eliminated by working with the distributions of the 

envelope alone. 

The high-frequency variation of the characteristic function of V contains 

always cosw t      To put the high-frequency dependence in evidence let us   write 

the characteristic function as F?v.(^. ,5?i t, cos OJ t).     Then, if the charac- 

teristic function for X and Y is transformed into polar coordinates, 

F2X,Y(^l'1r)l''X2'yl2jt) = F2X,Y(5l   COS *l'5l sin *\'\ cos ^zBin *2;t)' 

(2.21) 

the connection between the two is 

F2XY'Vos<1rVin^l,Vos^'Vln,i2lt' = F2V^Bl'52;t,COS t^2"^l^'- 

(2. 22) 

a result derived in Appendix III, on the assumption of a uniform 

phase distribution.    Without any restrictions on the phase, however, the 

distribution of envelopes and phase difference may be found.    We have 

oo    oo    2ir 

w2(RrR2,o) - RIR2 J J J   (-^*z 3i 32 dSxd52 
o   wo w o 

XJ0([^Rf  +^2R2  +  ^Sj^R^costO - 6)]   '" (2.23) 

x F2V^l'^2;t' cos ^* 
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where Q = Q£ - &v 6 - ^>z~^l 

As an important special case, one finds 

CO 

WX(R) = R   f  £Jo(£R)Fv0;)d£. (2.24) 

The above relations are true of narrow-band distributions in general; 

these must now be applied to the nearly gaussian distributions which are our 

primary concern.    If there is an unmodulated carrier present as well as the 

nearly gaussian noise, the instantaneous value of the sum of the two may be 

written    variously as 

Z(t) = A    cosw t + V(t), 

= [A    +X(t)]cosut+Y(t)sinut, 

= x(t) cos OJ t + y(t) sinw t. 

(2.25) 

Using Eqs.  (2.1), (2. 21), (2.25) together, the distribution of the envelope 

is found to be 

WX(R) = 

-R2
+A2 

o 
2i|i 

(2. 26) 

2A R o 4A R       , , 
^(AR/ili) 

r(R2 + A2)    8(A2+R2) 

4> 4> 
+ 8 

_R2
+A2 

R       —21T. 
4* 

A nearly gaussian distribution is shown in Fig, 1 for various values 

of signal-to-noise-power ratio together with gaussian noise of the same 

mean square value.    Before the nearly gaussian distribution can be plotted, 

a value of the fourth-order semi-invariant must be assigned.    The graph 
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here represents a noise  source producing square c-w pulses of constant am- 

plitude, serving as an approximation to clutter in a radar system.   _/V _/3! ip 

then becomes l/4v , where y is the density parameter previously defined 

(Eq. 2.8).    The nearly gaussian distribution has more small deviations from 

the mode and a larger tail than does the gaussian. 

As pointed out previously, the random walk model is not equivalent to the 

Poisson one. For this noise source, the deviation of the random walk distribu- 

tion from the gaussian are equal in sign but opposite in magnitude to the devia- 

tion of the Poisson model distribution in the figure (for equal densities).   In general, 

+2 
Poisson 

A 
40 

*2 
*i (2.27) 

Random 
Walk 

when the Poisson and random walk densities are the same. 

The phase distribution presents a more difficult problem.    The sum of a 

sine wave and narrow-band noise willnothavea uniform phase distribution since 

the phase of th« carrier takes apreferred value.   If, however, the noise by itself 

has a uniform phase distribution, then the desired distribution may be found by 

transforming coordinates from X,Y of Eq. (2.20) to  x,y of Eq. (2.25). 

The joint distribution of envelope and phase is thuB 

WjtR.O)  = r1+
A4o .*] R 

"2lf4>exP' 

whence 

wx(0) = 1 
A40   321 

3!   3+2_ 
e 

2TT 

-p sin  9 
[ 

R2 + A2 - 2A RcosO o o 
'   2 $   ,l 

(2.28) 

[ z^pif cos 0+1F1(--^, ^i pcos  0)] 

or as a Fourier series. 

co m/2 
\ 7 €_p 

WJ9) 
€       P m cos mO 

m! p(^ + 1) JF(^; m + 1; - p) (2.29) 

m = o 
A 
3! 4* 

40  m(m+2) _, m. 
"T —*— F(i£+2;   m + l;-p)l 

The envelope distribution, Eq. (2.26) can also be derived from Eq. (2.28) 
by integrating over the phase, but its previous derivation directly from 
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Eq.  (2.24) emphasizes that no assumption on the phase distribution is 

necessary. 

The second-order distribution is needed for calculating correlation 

functions.    For a nearly normal noise alone, from Eq.  (2. 23) we have 

A 
w2(R1,R2,e1,e2st) = R,R2 

40 r8
2        82 ,  ,    2      9  r        ...8 ...    9   , 

A22">   1    82 

+-^[7i7 + 2^I + 0,Y"2) 
2 2-, 4>2Rj - 24jrQR1R2cos e + i^R^ 

exj < ^ 2 2  

 Z Z—2~~ 

(2.30) 
where 9 = 02 - 8. , and the parameters are those of Eq.  (2. 18). 

If a sine-wave signal is also present, the distribution of the envelopes 

and phases of the sum can be found by transforming variables in Eq.  (2. 25) 

to the polar coordinates corresponding to Eq.  (2.20).    The result for a 

signal and noise is 

.2 A40r 92 

S+N 
1 

8*1      34>2 

9 9 9 W2(R1,ei,R2,e2;t)p^^l+-1^f7+fT]+^3f-[A31(t)^-+A13(t)^-] 

+ A22<t)
rl       92     , ,       8-     ,  ,WI   -2 

"3—l~7Z7~Z 
*    9ro 

>2 

94(^8^ 

R1R2 

(ZvT^^-^r*) 

exp 
-A2(4i1-2^ro+42)   R2^2-24;roR1R2cos 9 + i^R2, 

2(^4>2-roV) 2(^+2 - * V) 

A    T» 

O 
1(i|i2-4Jro)cos61+AoR2(^-^ro)cose2 

 2~Z~ 
V2"+ ro 

^=.^=4, 

(2.31) 
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III 

Physical Noise Sources 

3,1    Introduction 

A search through the literature has shown that the Poisson noise 

model is applicable to most actual noise sources, although the range of 

densities characteristic of nearly gaussian noise is found only occasionally. 

The five principal groups of noise sources (not all microscopically distinct), 

considered below in the same order, are those associated primarily with 

(1) radar, (2) sonar, (3) atmospheric disturbances, (4) extra-terrestrial 

generators, and (5) the quantization of charge. 

3.2   Sources of noise in radar 

Undesired echoes in radar are an example of Poisson noise.    Besides 

the desired target echoes the radar picks up signals from the surface of the 

sea or ground, from storms, and from "window"   — metal strips used to pro- 

vide spurious target indications.    All these are lumped under the general title 

of  "clutter" [ 18,19] . 

In a pulsed radar {with a fixed pulse repetition frequency), the input 

signal following a transmitter pulse represents the echo obtained from a 

range proportional to the time elapsed since theinitiation of the transmitter 

pulse.    At the start of the next pulse, the range is set back to zero and then 

increases again, as shown in Fig.   2a and b.    In analyzing clutter, we want 

the return signal  from one fixed range, R   , which, as  shown in Fig.   2c, 

is a number, viz. ,   the amplitude of the echo.    Before being presented to 

the observer, the signal from a fixed range is converted to "boxcars," 

Fig.   2d, and then smoothed, as in Fig.   2e, to give the final form.    The 

display is presented on a cathode-ray tube where the persistence of the 

phosphor serves as the boxcar generator.    Variations in the clutter return 

between successive pulses are quite small, so that the smoothed represen- 

tation is an accurate one. 

The return, nominally from a single range,  R   , actually comes from 
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a small volume around R   within which targets cannot be resolved.    The o ° 
non-zero angular widths of the antenna beam, © and4>,*mean that targets 

in a solid angle 0<*>will be illuminated simultaneously. With a pulse du- 

ration, T, targets in a range interval of length c T/2, where c is the pro- 

pagation velocity,   produce echoes which overlap the return from R ; thus 
2 the resolving volume is R    © $ c T/2.    For typical radars, the pulse duration 

is about 1 usec corresponding to a range interval of 150 yards and the beam 

widths, 0.5-5   , so that, up to ranges of 1-10 miles, the shape of the resolving 

volume is narrow and deep, while at greater ranges it is broad and shallow. 

The clutter return at the detector is represented by, as in Eq.   (2.9), 

K 

V(t1)=   X^lk^'l " tikVf",C08(Wottl " 4kl  -*k}' (31) 

1 

where the scatterers are independent and uniformly distributed through- 

out the resolving volume.    Here A,   is the amplitude of the echo from the 

kth scatterer in the resolving volume and \\i,   its phase; e is the pulse shape, 

a constant of the transmitter, but also a. function of the time of arrival of 

the received pulse; Tis the duration of the pulse, also constant;  and w    is 

the i-f frequency.    The average number of scatterers in the resolving volume 

is the density parameter of the clutter, because the ordinary definition of 

•y as the average number of pulses per second times the mean duration of a 

pulse must be divided by the amount of time that the radar receives echoes 

from the single range R . 

If the obstacles are moving relative to the radar, the clutter at a 

later time will contain variations because of a shift in the epochs 

tl .    The effect of motion can be important; however, the problem is treated 

in Appendix IV, since the analysis is moderately involved and does not bear 

directly on the noise density, our primary concern in this section. 

Echoes from "window" 

One important type of clutter is "window," echoes from metal strips. 

Analysis of the echo from a strip [ 20]   shows that the amplitude depends on 

* 0 and <t> are equivalent rectangular beam widths in their respective directions. 
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the orientation with respect to the direction of propagation, but that the time 

over which the correlation function differs from zero is much smaller than 

the rotation time of a strip, so that the amplitude return is effectively con- 

stant in time i. e. ,    a, =a?).    The total number of strips in a resolving vol- 

ume is large enough so that the noise is gaussian if the strips are physically 

independent;  however, they might cohere in clumps so that there are only a 

small number of effectively independent scatterers.    Unfortunately, present 

measurements of distributions [ 21,22]  contain enough experimental uncer- 

tainty to mask any nearly gaussian deviations. 

Echoes from precipitation 

Rain, hail, and snow also may give radar echoes, particularly at higher 

microwave frequencies [23] .    This particular problem may be formulated in 

terms of reflections of a plane wave from an aggregate of spheres.   Trinks[24] 

has shown that for Rayleigh scattering interaction is negligible if neighboring 

spheres are two or three diameters apart.    Meteorological observations of 

rainfall [25,26,27,28]  have shown this requirement to be well satisfied. 

Humphreys [29]  gives the weight of rain water in the air per cubic meter as 

a function of the rate of rainfall, while the NEL group [27]  and Laws and 

Parsons [26]  give distributions of drop sizes as a function of rate of rainfall. 

The drop distributions are apparently not single-valued functions of rain in- 

tensity, but they are consistent enough to make an approximate calculation of 

the density parameter, y , possible. 

As the rate of rainfall varies from 0.25-100 mm/hr.  (from drizzle to 
3 

cloudburst), the weight of suspended water goes from 0.1-5 g/m   ; and the 

average drop radius, from 0.05-0.15 cm.    The drop distribution gives the 

relative amount of water at the ground contributed by drops of a given radius. 

This is the important distribution, since what is needed here is the amount 

of water in drops of a given radius, not the number of such drops.    The dis- 

tribution should be corrected by dividing by the terminal velocity distribution 

of the drops; this will give the drop distribution in the air.    Since the larger 

drops travel faster, this correction reduces the average drop size, and so 

increases the density parameter.    As the lower figure is found to be large 

enough to provide gaussian noise, additional refinements were felt to be un- 

necessary . 
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The average number   of drops per cubic meter is then 150-400, varying 

with the rate of rainfall.    This correspends to an average distance between 

drops of 12-8 cm.    Since the distance required for negligible interaction 

between scattering for different drops is 0.3-0.9 cm, it seems clear that any 

lack of independence in the  scattering is small enough to be ignored.     This 

many drops, scattering independently, give a normal noise return from each 

cubic meter. 

The same conclusion may be reached with more careful reasoning, 

by dividing a cubic meter into cubic cells such that the scattering from  pairs 

of drops is interdependent only if the drops are in neighboring cellc.     The 

cells prove to be numerous enough (several million to the cubic meter) that 

the possibility of having more than one drop per cell is negligible.    Since the 

drops are distributed uniformly and independently, the conditions for a 

Poisson distribution are satisfied.    The number of interacting pairs also 

possesses a Poisson distribution.    A calculation of probabilities  shows that 

for all rain intensities, 99.9 per cent of the time, less than 1 per cent of the 

return will be from interacting drops.     These "exact" figures should not be 

taken too literally, but they do illustrate the overwhelming likelihood of in- 

dependence. 

One of the salient characteristics of rainfall is its inhomogeneity, both 

temporally and spatially.    With rain gauges less than 5 meters apart, 

Rado [ 28]    found variations of from    5 to 20 per cent in the measured rainfall, 

while the NEL group [ 27] , with gauges 200 meters apart, found much larger 

differences. 

Thus, in one resolving volume, the rain is almost certain to be non- 

uniform.    If the non-uniformity represents merely a statistical fluctuation, 

then unquestionably the noise is gaussian.    If this is not so, on the other hand, 

the volume may have to be split into subvolumes, each of which has different 

statistical parameters.    In this case, the subvolumes will be larger than a 

cubic meter, so that the total return will be a superposition of gaussian noise 

from each subvolume, and therefore gaussian itself.    The conclusion from 

the above is that clutter from meteorological precipitation is effectively al- 
ways gaussian. 
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Echoes from the sea surface 

Another    source of clutter is sea return—echoes from t^he   sea sur- 

face [30,31] .    Exactly what reflects the incident pulse is an unsettled 

question; quite possibly the mechanism may differ for different grazing 

angles of the incident beam.    There are three possibilities; (i)   specular 

reflection from the waves themselves, ('ii) reflections from ripples on the 

surface of size comparable to a wavelength, or (iii) reflections from spray 

droplets. 

The radar cross section* ox the sea for high grazing angles shows 

large values that apparently are due to specular reflection.    The data for 

low grazing angles do not show this effect, so that it is not sufficient to ex- 

plain all the results [31,32] . 

The dependence of cross section on polarization favors the droplet 

theory.    For fairly calm seas, the cross section for horizontal polarization 

is smaller than that for vertical; the difference becomes smaller for rougher 

seas and at moderate roughness becomes negligible.    This can be explained 

by destructive interference between the incident and reflected waves above 

the surface at the height of the droplets.    A rough sea destroys the inter- 

ference pattern, making the cross sections for the two different polariza- 

tions equal.    The shifting of interference patterns with grazing angle suffices 

to explain the observed dependence of cross section on grazing angle [33] . 

On the other hand, measurements of the dependence of cross section on 
-4 wavelength [32] .indicate a X     behavior, which favors ripples as against 

both droplets and specular reflection.    Also, the drops needed to produce 

the observed magnitude of sea echo are much larger than those found in 

practice.    The approach to a limit of the cross section at low wave heights 

(2-4 ft) also favors ripples, since with high waves, more and bigger drops 

and steeper wave fronts are present.    The last two factors  would favor a 

*The radar cross section of an obstacle is defined as the area Intercepting 
that amount of power which, when scattered isotropically, produces an echo 
equal to that observed from the target.    For sea return, the cross section 
is expressed as a dimensionless ratio by referring it to unit area of the sea 
surface; it may be greater than one if the actual scatterers are not isotropic. 

'•• 
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continued increase of cross section with wave height, if drops or specular 

reflection were the primary mechanism. 

The nature of the scatterers is not settled; the observed distributions 

are  usually gaussian to within the limits of error of the measurements. 

This cannot be accepted as conclusive, however, because of the major effect 

of deviations from the normal law appear in regions of large amplitude, 

which is the part of the distribution most difficult to obtain accurately.    A 

long period of observation is necessary to accumulate enough high-ampli- 

tude returns to decide whether the clutter is gaussian or nearly gaussian. 

Because of the finite lifetime of the scatterers, whether drops, ripples or 

waves, it ia entirely possible that the clutter statistics be non-stationary 

over the times necessary to measure the tail of the probability distribution. 

In fact, the only sea return distribution in Kerr [34]  that includes the larger 

amplitude region is distinctly non-normal, from whatever cause. 

The measured relative cross section is  -30 to -70 db, i.e. , as though 
-3 -7 10      to 10       of the illuminated area were isotropically reflecting.    This 

is so low a value as to argue against specular reflection.    In a typical re- 
4 5 solving area, there are  10    or  10    sq.   ft. ,  and, assuming a ripple reflector 

to cover several square feet, we see that the noise may well be nearly 

gaussian; no more definite conclusion can validly be drawn. 

3.3   Sources of noise in sonar 

Sonar, considered as an echo-ranging device, is very much like radar 

in its basic operation.    The wavelength and resolving volume are of the same 

order of magnitude as in radar, because of compensating changes in the 

other parameters.    Typical values for a sonar [35]  are:    transmitter fre- 

quency 24 Kc/s,    pulse length 0.2 sec,    bandwidth 6-10   , and the velocity 

of sound in the sea, 1600 M/s.    Then the resolving area is about 300 yards 

in range, varying laterally with range, and the wavelength is about 6 cm. 

Serious additional problems arise, however, because of the dispersive 

properties of sea water. 

Reverberation 

Sonar clutter comes from reflections from irregular inhomogeneities 

<•• 
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of the ocean, and from the irregular boundaries at the surface and bottom; 

it is usually called reverberation rather than clutter [36,37,38] .    The im- 

portance of the three types, "volume," "surface," and "bottom" rever- 

beration varies with circumstances as shown in Table 3.1. 

Volume reverberation is caused by sound scattered by air bubbles 

suspended solid matter   (e.g. , plankton, fish), and small thermal inhomoge- 

neities.   The measured relative cross section, i.e., scattering area per 

unit volume varies from  10       to 10       yd       at a medium range, 800 yds. 

This makes the total scattering area in one resolving volume (c    10  yd  ) 

.01-10 yd.      All of the above-mentioned scatterers, except for fish, are 

much smaller than a wavelength, so that the individual cross sections 

should be very small, except for those few scatterers of a size resonant 

for the particular transmitter frequency.     Then the received noise is 

"dense"   enough to be gaussian. 

Table 3. 1 

Predominant Type of Reverberation 

volume surface bottom 

Ij)eep 
"Vyater  < 

Smooth sea 

Rough sea < 

short range 

long range 
v_     [> 1 mile) 

y 

\/ 

s 

1 ' 
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At ranges less than 500 yards, reverberation from the surface 

may be 20 to 30 db higher than that from the volume.    Surface rever- 

beration drops off at long ranges faster than volume reverberation; in 

addition, it depends strongly on the sea state. 

As a function of wind speed, the return starts to increase at 8 mph, 

when whitecaps start to form, and continues to rise until it saturates at 

20 mph with the reverberation intensity 35 db higher than the initial level. 

This wind-speed dependence favors bubbles or ripples as the cause of 

scattering; however, again definite conclusions cannot be reached.    An 

analysis of the scattering from a dense layer of bubbles shows that their 

cross sections are not large enough to account for the experimental results 

by themselves.    Scattering from ripple patches can provide the necessary 

return alone; however, the observed reverberation is probably a combination 

of the two [39] .    Bubbles provide a gaussian return; the return from the 

ripples cannot be calculated without some knowledge of the ratio of the 

geometrical cross section to the scattering one.    An estimate of y is 

attempted here to point out the lacunae in our knowledge that preclude 

definite results. 

The relative cross section for surface reverberation varies from 

10       to 10     .    At 300 yd, the resolving area is 9000 yd   , which cor- 
-3       2 responds to 9 to 9 x  10       yd     of  perfect  isotropic reflectors.     The 

simplest assumption for the actual reflectors is that they are "perfectly 

diffuse," so that Lambert's law applies.    At 300 yd, the angle of incidence 

with the surface is about 6 degrees, with both incident and reflected flux 
2 

corrected to normal incidence, 900-0.9 yd    is the area of the scatterers. 

Since the reverberation intensity is found to be frequency-independent, it 

follows that the scatterers must be several times as large as a wavelength, 
2 

say 1 yd    for 24 Kc/s sound.    There are then 900-0.9 scatterers per re- 

solving area, a density range including both gaussian and nearly gaussian 

noise. 

The above figures must be considered as simply illustrative.    A 

proper estimate requires knowledge, rather than assumptions, of the back- 

scattering from a ripple and the average size and structure of ripples.    In 

addition, some knowledge of bubble-density is needed in order to estimate 

how much of the surface scattering is caused by bubbles. 

• 
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Bottom reverberation is important only in shallow water; however, 

there it is likely to be the dominant factor.    This scattering arises from 

irregular features of the bottom, comparable to surface reverberation from 

ripples; again, not enough is known about the back scattering from the types 

of obstacles likely to be encountered to make a density estimate possible. 

Noise from marine life 

A type of noise that has no counterpart in radar is that produced by 

marine life [40,41] .     The important distinction is that not echoes, but ex- 

ternally generated noise is present.    Most of these noises are markedly 

diurnal and seasonal; one important type, generated by the snapping shrimp, 

is both widespread geographically and continually produced.    Results for 

this noise are available in sufficient detail to permit an estimate of the ex- 

pected density [42,43] . 

The shrimp that produce this noise are of several species, all of which 

are  small (about two inches long) and possess a large snapping claw, which 

is directly responsible for the noise.     These shrimp are distributed in 

tropical and subtropical waters at depths less than 60 meters, with a rock or 

coral bottom.    Investigation off San Diego has definitely located the shrimp 

as the  source of crackling noise found along the California coast.    Among 

other areas in which both snapping shrimp and loud underwater crackling 

noise are found are Beaufort, N.   C. , Cape Hatteras, the Bahamas, Puget 

Sound, and several locations in the Central and Southwest Pacific. 

One of the important features of this noise is that its spectrum is 

very nearly flat from  1 to 15 kc, while most underwater noise varies 

according to a (1/f) law.    Shrimp noise is thus particularly prominent at 

the higher frequencies.     Measurements on an individual snap show an 
-4 .       2 average excess pressure of 60 db above 2x10       <%ynefcm    at a range of 

1 meter.     Corresponding figures from four shrimp beds found off San Diego 

are 43 db and  16 m, 34 db and 30 mr     35 db and 44 m, and 45 db and 20 m. 

The density can be found as the total power divided by the power per snap, 

both measured at the same range.    For the four measurements above , 

•y  is  5,2,6, and 12 respectively,values characteristic   of the lower range of 

nearly gaussian density.     The noise has been described as "like  static 

crashes"  or "coal going down a metal chute," which qualitatively tends to 
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indicate a fairly low noise density. 

3.3    Atmospheric noise:    lightning 

Lightning also causes noise; however, each stroke produces only one 

pulse so that the noise is not dense enough to be nearly gaussian.    Study 

of lightning shows that initially there is a moderately slow downward stroke 

followed by a rapid upward discharge, of durations roughly 10 and .05 Mc/s 

respectively.    After this, there is a further slow change to equilibrium. 

Superimposed on all these field changes are small, more rapid variations 

caused by fluctuations in the resistance of the ionized path; furthermore, 

multiple reflections from the ionosphere may occur (44,45).    One result of 

the presence of several different components is that the received wave form 

depends strongly on the distance of the receiver from the lightning stroke. 

Near to the stroke, the induction field will predominate and a slowly varying 

aperiodic wave form will be observed; far away, the radiation field produces 

a quasi-periodic wave form.    The various components all belong to the same 

stroke and different strokes are spaced widely enough so that the noise is of 

low density. 

A different type of atmospheric noise comes from snow squalls [46] . 

This is also an electric discharge, but the strokes are much shorter and 

weaker than in thunderstorms.    While the strokes are more frequent, the 

essentially distinct character of the individual received waveforms shows 

that this noise is also of the low-density type. 

Precipitation static 

Airplanes flying through precipitation in the atmosphere become 

frictionally charged.    If the storm is at all severe, a corona discharge occurs 

on the pointed parts of the aircraft, e.g., the wing tips or radio antenna. 

The noise thus produced limits radio reception considerably and may cause 

a total loss of intelligible functioning.    Because of the close connection between 

the noise and the weather in which it is produced, it is known as precipitation 

noise [47,48] . 

The most intense noise is produced from corona on the antenna.    Since 

aircraft surfaces in practical use charge negatively, the problem is that of 
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negative corona from a wire [49] .    Initially there is a glow along the wire, 

which with increasing potential, collects into an active spot giving pulses 

from a recurring breakdown.     The discharge is initiated by an electron 

avalanche in the high field-strength region near the wire.    The positive ions 

left behind, moving slowly, eventually fall into the negative wire and quench 

the discharge by momentarily lowering the potential difference across the 

gap.    After a recovery time, the field strength becomes high enough to cause 

a discharge again.    In air the pulse itself lasts about 0.1-0.5 usec while the 

recovery time is of the order of 1 Mc/s.   These recurring pulses are called 

Trichel pulses after their discoverer [ 50] . 

As the field strength at the wire increases, the frequency of the Trichel 

pulses does also, but before the successive pulses merge into a continuous 

discharge the first spot saturates and another active spot forms.    Because 

of the regular recurrence of the Trichel pulses, the individual pulses do not 

fit the Poisson noise model;   however, the sequences from different   spots will 

do so, and, as seen above, more spots will form with increasing field strength 

or discharge current. 

From the results on airplanes [ 51] , a check with the corona investi- 

gations is possible by calculating the threshold field.    At the corona thresh- 

old, the field on the belly of the test airplane was 250-300 volt/cm which 

corresponds to voltages of 25-30,000 volts.     For an antenna 0.04 inch in dia- 

meter, this means a field at the surface of 250-300,000 volt/cm, which is 

the range of values found experimentally [49,52] .    The density factor may 

be determined from 

Y = (total current)/(current/apot). 

The total current figures here are taken from the results of Gunn [51] , but 

data for the current per spot are not available from the results of Miller 

and I_>oeb [49] , since they measured the total corona current rather than the 

current per spot.    This makes a quantitative determination of y impossible. 

In air, currents start at 0.1-1 ua at the threshold (this is from one spot) and 

increase to values of 50-100 ua, by which time multiple spots have formed. 

The total discharge current from the airplane will be from 1 ua to 2000 ua, 

depending on the severity of the storm.     While a calculation of y as a function 
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of field strength is not possible, it seems clear that the noise density, 

varying continuoualyfrom low to high, will be in the nearly gaussian range 

for storms of intermediate intensity.    This is qualitatively borne out by 

aural observations of the character of the noise [53] . 

3. 4   Celestial noise 

A further source of noise is the electromagnetic radiation from 

celestial objects, particularly the sun [54] ,    Galactic and extra-galactic 

radiation is present over most of the sky.    Since the sources are so distant, 

the mechanism of generation is not completely certain; however, it appears 

that the radiation can all come from point sources.    The continuous radiation 

of known point sources indicates that the mechanism is probably a thermal 

one, since an equilibrium process appears necessary.    A thermal source, 

which here means a star, contains so many elementary noise generators 

that the noise is certainly gaussian. 

Solar radiation 

The relative nearness of the sun provides the possibility of deter- 

mining much more about its radiation.    Several different types of radiation 

in the meter-to-centimeter bands have been discerned, one kind always pre- 

sent, and several only occasionally present.    The ever-present radiation[55 ,56] 

is spoken of as produced by the quiet sun, since it provides a minimum solar 

noise level.    As it is always present, it represents an equilibrium process 

and thus is thermal and gaussian. 

The occasional radiation, produced by the "active sun,"   is of three 

types; isolated bursts, outbursts, and enhanced radiation.    Isolated bursts 

occurring for a few seconds are sometimes present in solar radiation with 

peak magnitudes 30-50 db above the level of the quiet-sun.    The bursts are 

unpolarized and have a sharp but smooth rise and a slow decay.    Their in- 

frequent occurrence marks them as low-density noise [5 7] . 

"Outbursts" are the most spectacular of the various forms of solar 

radiation.    Intensity recordings have gone off-scale after 70 db increases in 

power.    Outbursts last for several minutes at a time; they are apparently 

connected with visible solar flares—at least the larger of them are—and are 
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often the cause of complete interruption of short-wave reception      Out- 

bursts do not seem to be separable into superposed pulses and so can 

not be considered as Poisson noise [58,59] . 

Enhanced solar radiation 

The enhanced radiation from the active sun can be of considerable 

importance      While not the strongest form of solar radiation, it is 30 db 

higher (in power) than the quiet radiation and lasts longer than the other 

active forms [60,61].    The distinguishing characteristics of enhanced 

radiation are its duration (several days rather than minutes or seconds,) its 

circular polarization, and its correlation with sunspots.    Enhanced radiation 

is particularly important for our purposes, since it is the only type which ex- 

perimental results show to  be   nearly normal    At least two widely different 

origins have been proposed to account for this noise.    One model assumes   that 

the radiation is due to the thermal motion of the electrons in the fields near a 

sunspot [ 56,6 2] .    This is incoherent and depends on the mean thermal energy; 

extremely high temperatures (about 10       degrees Kelvin) are required to 

account for the observed intensities.    The alternative proposal is that coherent 

oscillations of the plasma may exist [6 3,69] .    This model avoids the temperature 

difficulty, but must explain how the coherence can be maintained in the presence 

of the large random thermal velocities [63-67,69]   in the solar atmospheres 

and how the energy can radiate from the generating regions where the group 

velocity is zero [6 3,66-68] .    Opinions are too unsettled, and detailed know- 

ledge of the solar atmosphere near sunspots too vague to make a detailed 

discussion of present theories worthwhile here; nevertheless, the experimental 

results show the features needed for Poisson noise [5   ,70] . 

Records of moderately dense noise where individual bursts can not be 

resolved give correlation times comparable to the duration of individual 

bursts discernible on quiet days [70] .    Wild [60]   has made a careful study 

of enhanced noise over the frequency band 70-130 Mc/s    for a period of 

several months.    From his values of average   power received and the ob- 

served distributions of bursts large enough to be individually measurable, 

one can estimate the density of the noise.    Wild gives an experimental in- 

tensity distribution for the bursts.    The middle of the curve follows an 

exponential law fairly clodely; at the low end the pulses were occasionally 
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lost in the background, and so the observed number of burstsis too small; 

and at the high end, the infrequent appearance of large amplitude bursts 

makes the sampling error large.    The average peak power in a burst is 
- 20 2 

found to be  2.5 x 10 watts/m   -c/s).     The average spectral width of a 

burst was 4.5 Mc/s between quarter maximum points.    Since the spectral 

shape was found to be essentially gaussian, the width of the equivalent 

rectangular-filter with the same peak value is 3.2 Mc/s.    Then the aver- 

age total power in a burst is 8 x 10 watts/m   . 

In order to find y, only the total power received needs further to be 

calculated.    For purposes of observation, Wild separated the received 
- 20 2 

wave into a continuum and bursts of amplitude 10   '    watts / (m   -c/s).    With 

the observed intensity distribution, the average value of the continuum is 

0.33 of the total power; including the 60 Mc/s bandwidth,  and uaing the ob- 

served continuum .75x 10   *     watts/(m   -c/s), the total power is found to be 
-20 2 

135x10    watts/ni   , whencey equals 17, in the nearly gaussian range. 

3. 5   Noise arising from the quantization of charge:    shot noise 

The various kinds of noise caused by the   discreteness of the elemen- 

tary particles fit the Poisson model.    Of these, shot noise is the simplest 

to analyze.    In a vacuum tube, the current contains fluctuations because of 

the discrete nature of the charge [71] .     As long as each electron is emitted 

from the cathode independently of the others, viz. , in the temperature-lim- 

ited and retarding field regions, the Poisson noise requirement is satisfied, 

and a density estimate  is straightforward.    The transit time in an ordinary 

10 

-9 
tube is about 10       sec,     so that 

Y  =<I>r/e = 5x 10        <I>. (3.2) 

The noise is broad-band, so that the leading correction term will be of the 
-1/2 -4 

order of   y •  *or a current of 1 ma, this is about 10     ; and the correc- 

tion does not rise to 10      until the current drops to 0.2 |ia, or less. 

In the spate-charge region of the characteristic, the electrons are 

not emitted independently and a different approach to the density problem 

is demanded.    The problem now is that each emitted electron modifies the 

space charge so that succeeding electrons find a larger potential barrier [72] 
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Obviously, the change in the space charge is produced in a fairly   small 

volume around the individual electron.    In an ordinary receiving tube the 

potential minimum is about 3 volts: the potential due to the moving electron is 

e/4irr , sothat4xl0     cm away from the trajectory of the emitted electron, the 

modification of the potential minimum is less than 1 per cent of its prior value. 

The quasi-stationary potential suffices because the electrons are moving in 

small enough fields   so that the retarded potentials are not necessary. 

The cathode surface may be divided into square areas of such size that 

only 1 per cent of the electrons emitted in the area will produce appreciable 

effects outside it, i.e.,  a fringe of width r   around the edges of the square con- 

tains 1 per cent of the total area of the square .   Then the various areas are ef- 

fectively independent and a noise density may be estimated.    Note that, since 

the number of independent areas is fixed, the random-walk model is applicable, 

not the Poissonnoise model.    The linear dimension of one of these areas is 
-4 2 7 400 r , or  1.6x10     cm.    With a typical cathode area of 0. 5 cm   , y is 2x10   , 

safely in the gaussian noise region.   This estimate is at the anode of the tube. 

If the network intervening between this anode and the output has a rise time longer 

than the transit time of the electron in the tube, the noise pulses will be stretched 

and  Y  increased. 

A consistency check with the previous result is instructive.   Certainly 

the effective density when all electrons are independent will be greater than that 

when they are not.    Infact.y,-. /v , is 2x10     ^O The ' "Poisson   'space charge x ' 
space-charge region may then be expected to start with currents of about 0.5ma. 

A second estimate of the current needed for a space-charge effect may 

be made as follows:   if,on the average, one electron is present in each elementary 

area, there is sufficient overlapping of electron emissions so that the as- 

sumption of independence is untenable.    Only about  0.1 of the emitted elec- 

trons have enough energy to pass the potential minimum, and consequently 
-13 2 the charge carried from one elementary area is 6 x 10   *       coulomb/cm   . 

_9 
For the transit time of 10        sec, a 1 cm plate to cathode spacing, and the 

cathode area 0.5 cm   , as before, this is a tube current of 0.3 ma, in order 

of magnitude agreement with the previous estimate. 

Photo-multiplier noise 

Photo-multiplier tubes are also sources of noise [73-75] .     The im- 
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portant distinction between these and other tube     sources is that the 

several stages of electronic amplification produce shot noise with ele- 

mentary pulses containing many electrons instead of single ones, as in 

the ordinary shot effect.    This means that the photo-multiplier noise 

current fluctuates more intensely than ordinary tube current of the same 

mean value [73] . 

Besides the shot effect, noise can be caused by spontaneous emission 

from the photo cathode or any of the dynodes.    This current is initially very 
-14 small   (perhaps  10       a. ), but electron multiplication again magnifies the 

effect to a level requiring consideration.    Such emission is called a "dark" 

current since it flows regardless of the illumination on the photo cathode. 

Photo-multiplier tubes are used mainly for two different purposes, 

to measure light intensities, or to count scintillations in radioactivity 

measurements. 

In scintillation counters, radiation causes a fluorescent screen to 

produce glowing spots that activate the photo-multiplier [76,77] . 

The signal pulses then have a duration of the order of the time constant 

of the fluorescent screen, a few microseconds.     The noise pulses, on the 

other hand, have durations of the order of the transit time through the tube, 

about 10 sec   [74] .    The input time constant of the counter pulse ampli- 

fier is made equal to the phosphor decay constant, which is short enough 

to resolve signal pulses and long enough to discriminate against the noise 

pulses.    The noise pulaes at the anode may then be considered 6-functions 

since they are of such short duration compared to the input time constant. 
4 

In a 931A tube, about 5 x 10        "dark-cur rent" pulses are emitted per 

second [75] ;  this gives ay of about 0.1.    Dark current noise is thus of the 

low-density type in scintillation counters. 

For light intensity measurements, the input time constant is large, 

(of the order of seconds, in fact) in order to smooth out fluctuations.    In 
5 

this case, the dark current is certainly gaussian, since y is about  10   . 

However, the signal current is so much larger that the noise may be taken 

as entirely shot effect, with the dark current completely neglected.    The 

transit time is so short compared to the input time constant that the spread 
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may be neglected.    The current pulses are then 

i(t)   =   aeexpl   - t/f}   , (3.3) 

where a is the overall multiplier gain. 

Now, we observe from Eq.   (2. 11) and (3. 3) that 

In particular 

>k "ft <•">•"    • (3.4) 

Notice that the fluctuation is increased by at least a factor ^aSover the 

ordinary shot effect, and that fluctuations in gain produce even larger out- 

put current fluctuations. 

Since X.. equals the mean current, we have 

Y=<I>T/<a>e, (3.6) 

which shows that y is smaller by the gain of the multiplier than for shot 

noise of the same mean value and time constant.    The gain of the tube is 

10    or 10   , so that this effect is quite important, particularly for the cur- 

rent at the photo-multiplier anode, since then T is the transit time of the tube. 

In the input circuit of the voltage amplifier following the photo*-multiplier 

tube, the time constant is about 1 sec, so that y is large enough for correc- 

tion terms to be safely neglected. 

Thermal noise in resistors 

Thermal noise from resistors is one of the commonest sources of 

noise.    From a macroscopic point of view the noise is sufficiently well 

characterized as gaussian with the well-known power spectrum W(f) = 

4k TR [ 78,79] .     The noise is caused by the random motion of the con- 

duction electrons of the resistor, achieving its randomness   by collisions 

with atoms of the lattice  structure, which is not completely regular.    For 

an order-of-magnitude estimate of the noise density, the Drude theory will 

be sufficient [80,81] .    In this simple theory, the conduction electrons are 

independent, which is necessary for the Poisson noise model to be directly 

applicable.    Furthermore, the mean free path is independent of the electron 
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velocity, while the scattering from a given collision is isotropic. 

Here Y equals the mean time between collision    times the average 

number of current pulses passing through a cross section per unit time. 

This last is one third the average number of conduction electrons per cubic 

centimeter multiplied by the product of the mean velocity and cross-sectional 

area.    Using the Maxwell-Boltzmann velocity distribution and the independence 

of the mean free path,-y is found equal to 4/3ir times the product of mean free 

path, cross section, and number of conduction electrons per cubic centimeter. 

One has 

Y = ^-£NA, (3.7) 

where li is the mean free path, N the number of conduction electrons per cubic 

centimeter, and A the cross-sectional area.    The mean free path may be ex- 

pressed in terms of the interatomic distance, d; also, the number of conduction 

electrons is proportional to the number of atoms, which should vary as d 
We have 

Y= —^T  A * (3-8> 
3ird 

-8 d is of the order of 10      cm. , k/, about 100, and k-, of the order unity, so that 

Y   =  4x 1017  A(cm2) (3.9) 

The leading correction term to the normal distribution ia of order 

•y        , which is certainly negligible here. 

Non-equilibrium sources of noise 

Besides thermal noise, conduction in solids causes current noise, 

semiconductor noise, and flicker noise.    These last are    nonequilibrium 

effects; their spectrum is directly proportional to the mean-square current 

and inversely proportional to frequency.   These phenomena are complex, 

each depending apparently on several different mechanisms whose relative 

importance is critically dependent on factors not ordinarily under control. 

Flicker Noiae 

Flicker noise is caused by variations in the emission from thermionic 
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cathodes over times large compared to a single transit time [82,83;84] 

For some reason, certain regions of the cathode surface emit particularly 

strongly for short times.     This corresponds to fluctuations in the work 

function, probably caused by diffusing ions.    A diffusion process leads to a 

1/(1 +OJ rj- j spectrum, where<7~is the lifetime of a diffusing ion; however, if 

an appropriate distribution of lifetimes is assumed, a 1/to spectrum can be 

obtained over any finite interval [84]       At present knowledge of the mechanism 

is insufficient to warrant an estimate of noise density. 

Excess noise in solids 

Certain types of resistors develop noise in excess of the Nyquist for- 

mula when current is passing through them [83-85] .    Besides the dependence 

of noise power on the construction of the resistor (e.g. , whether it is carbon 

composition or "metallized"), different resistors of the same kind of con- 

struction and of the same value of resistance, can give noise powers differing 

by a factor 20.    Here again, exactly to what the fluctuations should be as- 

cribed is not known in enough detail to allow a calculation of y . 

In semiconductors, two types of current carriers are present, each of 

which produces noise.    Excess noise, with the characteristic  1/f spectrum, 

is apparently caused by fluctuations in the number of minority carriers [86] . 

Minority carriers affect the conductivity strongly, since they add to the total 

number of current carriers themselves and by lessening the space charge, 

also increase the number of majority carriers [87] .    In the material not near 

an electrode, the current density will be nearly uniform; using the same 

reasoning as for thermal noise, we see that   y  =• i, NA.    The cross-sectional 

area is about the same as for thermal noise; and the mean free path is com- 

parable [88];  however, the concentration of minority carriers is much less, 
- 7 - 8 10       or 10 of the total number of atoms [89] .    The excess noise is thus 

much less "dense" than thermal noise; nevertheless,   y will be sufficiently 

large so that the noise is effectively gaussian.    Evidence has been presented 

that another component, due to majority carriers, is present, becoming rela- 

tively more important at the higher frequencies (above  .10 kc/s) [90,91] . 

Since this noise is denser than minority carrier noise, it will be 

gaussian also. 
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Barkhausen noise 

The noise in ferromagnetic materials caused by changes in the domain 

structure [92]   is called Barkhausen noise.     As a magnetic field is applied, 

two different processes take place.    At low values of the impressed field, the 

domain boundaries move, with the result that favorably oriented domains be- 

come larger at the expense of slightly misoriented domains.     With greater im- 

pressed fields, the direction of magnetization of domains originally oriented 

nearly perpendicular to the field is rotated toward alignment with the field, 

without any wall motion.    Domain rotation produces noise because of the dis- 

crete character of the changes of magnetization [93,94] .    Inhomogeneities 

making the wall motion irregular may also produce noise [95] .    As the domain 

wall moves past an imperfection, subsidiary walls reaching from the irregu- 

larity to the main front are formed; with continued expansion of the main wall, 

the subsidiary walls stretch until they break, giving a smooth main wall and 

leaving a small stationary domain around the imperfection.    Barkhausen 

noise has been observed when no domain rotation was occurring, favoring the 

above mechanism.    Quantitative statements about the relative importance of 

these two mechanisms or estimates of the noise density, do not yet appear 

possible. 

» 
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IV 

Rectification of Nearly Gaussian Noise 

The next task is to use the distributions previously found in sectionII, 

with specific forms of the correlation function and semi-invariants suggested 

by section III, to determine the most important statistical parameters   of the 

output of an a-m receiver with a c-w signal and nearly gaussian noise   im- 

pressed on the input. 

4. 1      Model of an a-m receiver 

In an amplitude modulation system, the signal is transmitted from 

source to receiver at a relatively high frequency, which is demodulated by 

the receiver to recover the envelope of the high-frequency variation, which 

represents the original signal.     The noise is generated in the channel and 

in the first sections of the receiver.    The receiver contains a band-pass 

filter which eliminates all spectral components except those in a narrow- 

band around the central frequency, and a demodulator, composed of a half- 

wave v-th law detector followed by a low-pass filter.    The relation between 

output and input of a nonlinear device is called the dynamic transfer charac- 

teristic; for the half-wave v th-law device, we have 

I = g(V) PVV V> 0 (4. 1) 

0      V< 0      , 

where I is the output, V the input, and |3 an appropriate proportionality 

constant      The input, V, is a narrow-band signal and narrow-band noise, 

but the nonlinear device changes the spectral composition, so that the out- 

put is composed of spectral zones lying at multiples of the central frequency 

of the input; the (ideal) low-pass filter eliminates all these zones except the 

low-frequency one, corresponding to the zeroth     harmonic.    A block diagram 

is shown in Fig.    3.    together with typical waveforms and spectra at various 

points in the circuit. 

The system treated here is of course, an idealization of actual ones. 

Two of the more critical approximations are those of representing actual 
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modulations, which are functions of time, by a constant value and represent- 

ing the dynamic detector characteristic by a simple power law, without in- 

cluding saturation effects at high voltages and smoothing of the discontinuity 

in the slope at the origin.    Nevertheless, the idealized system  in most appli- 

cations is a sufficiently close representation to warrant analysis. 

Since there is noise present, a complete analysis should give the prob- 

ability distributions of the output.    This is a difficult problem which has been 

solved only for the quadratic detector ( v = 2), [96,97] an important and par- 

ticularly simple special case.   We shall calculate the correlation function of 

the output, a much simpler problem and one whose solution yields considerable 

insight into the effects of noise in the system.    Two different methods can be 

applied, corresponding to the different statistical descriptions of the input by 

the distributions of either the instantaneous value or of the envelope and phase. 

The former of these is better suited to the major problem, but the envelope 

and phase description give    a better picture of the zonal structure, so we 

shall use it initially. 

4.2   Output power 

The output can be expanded in a Fourier series, 

 oo 

I = g[Rcos(ut -0)]   =     > e   aJR)cosn(ut- 0), (4.2) o /     v        n   ii o 
n=0 

2- L an(R) --^       /       g[Rcos(wot - 0)] cosn(wot - Ojd^t , 

in which e    is the Neumann discontinuous factor, €    = 1, <    =2 for    n >  1. n o       '   n — 
The envelope and phase are also functions of time, but they vary so little 

during one period of cosut that they may be considered constant in calcu- 

lating an(R). 

The output correlation function is then 
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oo 

R^ =   <¥2>   av   =    XL    «n   <an(R1)an(R2)co8n(Wot-O2+01)> 

n = 0 
av 

(4.3) 

Note that only the phase difference occurs in this equation, so that the re- 

quired probability distribution can always be found, as in Eq. (2.22), from 

the distribution of instantaneous values.    The power in each spectral zone, 

P . can be found from the correlation function for t = 0,P=e      {a.   (R) > n' n      n   \   n%   ' s av 
since now 0? = 9..    The d-c power equals the square of the mean value. 

P,       = <a (Rly      .    For the half-wave detector, we find d-c      xov    '/ av 

a   = PRVCV + I)  (4.4) 
n     2v+ y.(Z+JL + 1jfV^_E! +1 

Equation (4.4) shows that the detector output possesses the  same dependence 

on the input envelope for all zones, so that the only difference between zones, 

is   in a multiplying factor.      Blackman [98]  has previously pointed out this 

result, though stating the implication in less general terms.    This is that 

the relative power per zone is a constant independent of the statistics, i.e. , 

regardless of what the input is, the detector places the same percentage of 

the total output power in each spectral zone. 

Such  a result   is worthy of note,   since it is by no means intuitively 

obvious.      Indeed,   it seems possible that some input could be found that 

would contribute an extra share of power to the higher zones, and adifferent 

input whose power would be distributed mostly to the lower zones.    For the 

v th-law detector, no such input exists;however, this detector is apparently 

a very special case.* 

• Clearly,   a sufficient condition that the result should hold is that g(RcosO) = 
g,(R)g?(cos 9), and the v-th law detector does, in fact, satisfy this.    Neces- 
sary and sufficient conditions are not obvious; however, it seems likely that 
they are somewhat but not very much weaker than the above, the point being 
that if the envelope and cosine factors can not be separate before the integ- 
ration is performed, n and R are likely to be inextricably mingled in the re- 
sult.   As an example, if ahalf-wave rectifier with saturation is represented by 
g(v) = Pi 1 -exp( - av)] , then a   (R) = P[ 6    - I (a R)] , and the relative power in the zones 
quite definitely depends on the input statistics. 



TR189 -38- 

The low-frequency zone is the most important in the treating of the 

receiver problem, so that all results are given in terms of it.     These re- 

sults can be altered to give the power in a different zone, if desired, by 

multiplication by an appropriate constant factor.    The averages are evalu- 

ated in Appendix V;  for the total low-frequency power, we have 

• PV3( +   D       flf TT   I , 1   •   X40V(V~1) 

       '"T")    1   iF,   -v;l;-p  + > 
4rVr   + 1)        Z      I  l    l 31 +' 

VVt *'     (-£>   i   1F1(-v;l;-p) + -^—j ^^-V+Z'.IJ-PJ+CXY"
2

) 

(4.5) 

and, for the d-c power, 

p^-c   ^ v +1)  (z) 

V , V 

v                  ^40 2^7 " *) v -2 
lP1(-5;lj-p) + -SSL£*   1r1(-J+2;l;-p)+0(T   ) i-r  2 - ~ •     3!4J2 IT   2—- 

(4.6) 

2 

where p = A**/2i|jiB the input signal-to-noise ratio.    If v  in Eq. (4.5) or 

v/2 in Eq. (4.6) is a positive integer, the nearly gaussian series termin- 

ates and the above expressions become exact;  furthermore, the confluent 

hypergeometrie functions reduce to polynomials. 

These equations are plotted in Figs.  4 and 5 for gaussian noise and 

for a nearly gaussian noise of comparatively low density.    As these graphs 

show, the change in the output power caused by the nongaussian statistics 

is small for small values of  v , and small for large values of p.    When v 

is greater than one, the nongaussian output power, (Fig. 4), is greater 

than in the gaussian case;  while for v less than one, either may predomi- 

nate,  depending on the signal-to-noise ratio. 

When v and p are both less than one, the nongaussian power is always 

less than the corresponding gaussian one;  however, if p is greater than one, 

the nongaussian power is first greater, then less, the crossover point in- 

creasing from v equals zero to v equals one as p increases from one to in- 

finity.    For large signal-to-noise ratios, the output power is composed 

mostly of S X S  (signal X signal) and S X.  N (signal X noise) interaction, while 

with small signal-to-noise ratios, the power arises mostly from n X   n 

(noise x   noise) interaction.    There is no a priori reason to believe that the 

t ... 



FIG. 4    TOTAL   LOW-FREQUENCY   OUTPUT   POWER 
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nongaussian  result will bear the same relation to the gaussian in the one 

case as in the other, and in fact,   Eq.   (4.5) shows that they do not.    Ana- 

lytically,   these facts depend on the behavior of the confluent byhypergeo•- 

metric functions, which are discussed in more detail in Appendix V.    The 

discussion on the total power carries over immediately to the d-c power 

except that all the values of v previously mentioned must now be multi- 

plied by two. 

The asymptotic series for the hypergeornetric functions of Eqs.  (4.5) 

and (4. 6) show that the leading nongaussian term is of order p     , while 

the leading noise term is of order p Thus, in the strong signal case, 

as well as the usual suppression of noise relative to signal, there is an 

additional suppression of deviations from gaussian statistics (except for 

values of v near 1).    The figures and equations show that in order to detect 

the type of statistics present in an experimental problem by a power meas- 

urement, the detector used should have a high power law and the noise power 

should be measured without any signal present.    The first of these require- 

ments is intuitively reasonable, because, since the tails of a distribution 

are particularly sensitive to the exact type of statistics, a large value of 

v   , which accentuates the effect of the tails, is desirable. 

From a practical point of view, however, large values of v  will be 

more sensitive to saturation effects.    In an actual detector the maximum 

output will always be limited, either from saturation in the detector itself 

or in the i-f amplifier preceding    it.    The law of the detector, of course, 

has no bearing on the overloading of the i-f amplifier, but large values of 

v  will require the detector to produce large outputs without distortion when 

only moderate inputs are present.    Four or five would probably be as high 

a value of v  as one would want to choose. 

The second requirement above is not obvious, since a locally injected 

signal of known strength increase the output noise power because of the 

cross-modulation products of the  signal and the noise present in the output 

of the detector.    For low input noise levels, it may be important to be able 

to adjust the output noise power to a level large enough to be convenient. 

One might think that cross-modulation would also accentuate the difference 

between gaussian and nongaussian noise; however, the above figures and 



TR189 -40- 

equations show that quite the contrary is the case;   in fact, the power differ- 

ence is not only less relative to the total output power with increasing signal- 

to-noise ratio, but even decreases in numerical value.    Thus, although adding 

a signal may be worth while in order to measure noise power, the method is 

entirely unsuitable for distinguishing different types of statistics. 

4. 3      The output correlation function 

For evaluat'ng the correlation function, the distribution of the instan- 

taneous value is preferable.    Whils the envelope and phase distributions can 

be used, the final result is then in a less tractable form.    Thr correlation 

function can be expressed in terms of the characteristic function by using the 

complex Fourier transform of the dynamic characteristic [99,100] , 

SO 

w   .) g(V)e"iV2dV, I 
g(v) =-^     /  f(iz)eiVz dz, (4.7) 

where g(V) is zero for V leBs than some V , and of no greater than ex- 

ponential order at infinity, and C is a horizontal contour in the complex z- 

plane lying below the singularities of f(iz).    The output correlation further 

becomes 

RT(t) = <g(V1)g(V2)> =  _*        J   d«j    /   dz2 f(i^)f(i«2)    (expd^-f i^V2)>av, 
'     ' c c 

(4.8) 

and the average of the exponential defines the second-order characteristic 

function    (Eq.   2.2). 
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The input signal to the detector in this case is the sum of a sine wave and 

random noise which are independent of each other, so that the characteristic 

function in Eq.   (4.8) is the product of the separate characteristic functions 

of the  signal and the noise.    Since both inputs are narrow-band, the two   char- 

acteristic functions are expanded in Fourier series in order to exhibit the 

zonal structure of the correlation function; for the detector problem, we 

need only the correlation function of the low-frequency zone, R(t). 

The detailed evaluation is carried out in Appendix VI;  here we men- 

tion that two forms of the correlation function are possible, a convergent 

power series in p, the input signal-to-noise power ratio, useful when the 

signal is small, and an asymptotic  series in 1/p useful when the signal is large 

relative to the noise.    These series are given in Eq.   (VI. 13)   and (VI. 14) of 

the appendix, respectively.    The general results are sufficiently complicated 

so that a study cf various special cases is desirable. 

The leading terms of the series in p can easily be found from Eq. (VI.15); 

however, the equation remains difficult to interpret unless the hypergeometric 

functions involved reduce to simpler functions.    The two most important 

values of v are one and two, corresponding to the linear and square-law 

detector, respectively.    The square-law case is particularly simple, viz., 

2   2                            2Ao?(t) -, 
R(t) =£fL   [!+*£+   —^    +2p(l+  ro) + p*];     v = 2. (4.9) 

This result is exact for all p and  y, all other terms in the general result 

vanishing.    For this particular value of v , the output voltage is the same, 

except for a scale factor, as that from a full-wave squaring device; ac- 

cordingly, the correlation function can be calculated directly as a moment, 

Z Z Z 
R„,(t) = £j- <[V(t ) + A   cosu t  1   [ V(t    + t) + A   cos w (t    + t)l  ">     . T 4   . >-L       o o o oJ   L    ' o o o   o J   'av 

(4.10) 

This is by far the simplest way to obtain the output correlation function; 

unfortunately, the method can only be applied when v   is an even integer. 

For the linear detector, the hypergeometric functions reduce to complete 
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elliptic integrals, and the leading terms are 

B2J 2 X40 A31(t) +A3(l) 

R(t) =&2* E + r2B+ —1£ (K-2E) 
TT I 12^ 

A
22(t>  2 r  D + _££__{ 2D + K) 

12 4i 12* 

+ p E + r  3 + —4-S- 
124* 

4E -  2K 
1-r 

2E-B 
T   + ro—TT\ 

1-r 
o J 

A3l(t) +An(t) ErQ - B        A22(t) 

124>' 1-r 124. 

E+ 2B 
-'J-^z-zci Z-TI 

0     1 i-T 1-r 

+ 0(Y"2,p2) ' ;  v=l. (4.11) 

In this equation, the functional dependence of r   (t) on t, and of the 

elliptic integrals on r   , e.g.,   E(r   ), has not been explicitly expressed. 

If it is thought preferable, the various elliptic integrals appearing can 

be expressed in terms of any two, preferably K (r   ) and E (r   ) the complete 

elliptic integrals of the first and second kind respectively, by using the re- 

lations [ 101] 

E + (l-r2)K = r2B, o o 

K E = r   D, o 

(2-r2) K = 2E + r4C. o' o (4.12) 

All five integrals have been tabulated, e.g., in Jahnke and Emde.    This 

result for the linear detector is not exact, either in p or in y;   furthermore, 

there is no essentially simpler way of obtaining this result,   in contrast to 

the case of the quadratic detector. 

The correlation function when the signal is much stronger  than the 

noise is considerably simpler than for the weak-signal case.    The leading 

terms of the result for a vth-law detector are 

K(t& 
4F4(^+i)       z 2      p P

2
    I 

((^
2 + ^-l)2hl+r2)+4(^)(^4)ro  + 
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A      w  ,A      i ^   r,/^2 x  /I _  IA21  A. 1 (J - i)2A40 + z\K\ - D(A31) + (A13) + [2(\)Z + £ - i)2] A. 

+ 0(p"3,  y"Z) (4.1?) 

The correlation function shows the same suppression effects previously 

mentioned in connection with the output power., viz. ,   the first noise term 

is of lower order (in p) than the signal, and the first non-gaussian term 

is of lower order than the first gaussian one. 

4.4   Noise models 

To proceed further requires explicit models of the noise statistics 

in order to fix the time dependence of the  semi-invariants.    An immense 

variety of types is naturally possible;   three models among those felt to be 

the most important are treated here.    The amplitude, shape of the envelope, 

and the phase of the individual pulses are able to affect the time dependence 

of the statistics, while, in our models, time dependence enters through the 

shape of the pulse envelope alone.    This apparent restriction is justified as 

being usually true of actual noise sources (cf.   Appendix IV where this point 

is treated in connection with radar clutter)  and as being irrelevant to the 

real problem of choosing a suitable time variation.    By this last is meant 

that the time dependence of the  semi-invariants is what really matters and 

this can remain the same whether ascribed to pulse envelope, amplitude, 

phase, or some combination of all three. 

Pertinent data on the three models are summarized in Table 4. 1.    The 

exponential pulses represent impulses after having passed through a single- 

tuned circuit, as might occur with precipitation static in an aircraft receiver 

of shrimp noise in a sonar. 

Although a single tuned circuit is not an accurate model of the tuned 

stages of a receiver, this type cf time dependence is important because it is 

necessary (and sufficient)   if the process is to be Markoffian in the limit of 

increasing density   [ 102] . 

The pass band of an actual receiver is an involved function of the 

number of stages and the exact coupling network between stages.    As 

t ... 
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an abstraction from the details associated with any particular i-f strip, 

we shall take a pass band of gaussian shape as our model, which preserves 

the essential features of a pass band while remaining analytically tractable. 

Admittedly,   a gaussian pass band is not physically realizable, but it is a 

good approximation to the magnitude-frequency curve of actual amplifiers 

(if not to the phase-frequency curve), and possesses the important virtue of 

simplicity.*   Impulses passing through this i-f amplifier will become 

gaussian pulses as in the second model of Table 4. 1. 

The third type chosen is that of square: pulse envelopes of finite duration. 

This illustrates noise whose values are independent when separated by a 

sufficiently long, but finite time.    The model fits the sonar and radar clutter 

problem when relative motion between the transceiver and scatterers is slight. 

Notice that, for these three cases, all the semi-invariants can be ex- 

pressed as functions, in fact powers, of the input correlation.    Accordingly, 

the time enters only on a normalized scale and only implicitly through the 

input correlation function.    Figure 6 shows the time dependence of the fourth- 

order semi-invariants compared to the correlation function, showing the ex- 

tent of the more rapid decrease to zero of the higher semi-invariants.**     The 

corresponding figure for the linear model is obvious. 

4.5     Results for the quadratic and linear detectors 

Table 4.2 lists the correlation functions after a quadratic detector for 

the three different noise models.    The unnormalized values of the functions 

in the table are not of primary interest here since the parallel problem con- 

cerning output power has been discussed earlier.    The correlation function 

*H.  Wallman has shown that the pass band of cascaded networks whose individual 
step function responses have no overshoot tends toward the gaussian (Second Sym- 
posiumin Applied Mathematics, Am.  Math.   Soc.  1950, p. 91).   Furthermore it 
seems likely that one can extend these results to any cascaded network except 
to those tuned for a Butterworth response. 

**The linear model is one extreme of possible time behavior in that its semi- 
invariants of all orders decrease no faster than the correlation function.   One 
may conjecture that no-A.    (t) can decrease faster than the square of the correla- 
tion function, in which case the other two models represent the other extreme; 
however, we have been unable to prove this. 

•• 
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TABLE 4.2 

CORRELATION FUNCTIONS FOR 

THE QUADRATIC DETECTOR 

- Pltl 
1. Exponential Model:    r    = e      '  ' o 

2   2 
R(t) = &-f- [ (1 + P)2 + 2pro + (1  + i)r2] 

P2t2 

2. Gaussian Model: _ 
o 

2   2 
R(t) =&-|-[(l + p)2+ 2Pro + (l + —)r2] 

3. Linear Model: rQ =    jl-Plt|    , P |t| ^ 1 

0        ,P|ti^l 

R(t)   • B-JL.  [ (1 + P)2 + (2p + i) rQ + r2 ] 



EXPONENTIAL  CORRELATION 
FUNCTION 

0.0 

0.5 

GAUSSIAN   CORRELATION 
FUNCTION 

0.0 

FIG. 6    NORMALIZED    SEMI-I NVARIANTS 
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also gives information about statistical dependence in time (or equivalently, 

the spectral distribution of power) which is most clearly exhibited by normal- 

izing thecorrelation function so that it varies from one to zero.    Accordingly, 

we define 

. = R(t) - R(co) ,4  l4. 
rout(t) ~R(0)- R(oo)        ' (4'l4) 

The more rapidly r       (t) drops to zero, the less correlation there is 

between successive samples of the output wave. 

Some statements about the general effects of signal-to-noise ratio and 

noise density can be made immediately.    Passing through a nonlinear device 

cannot increase the correlation present in the input wave , whence r     Jt)<lr (t), r r out      — o 
regardless of the values of p or y.    Furthermore, the noise suppression effect 

when p is large means that the most rapid decrease of r       (t) -will occur when 

no signal is present and that, with increasing signal r       (t) will tend to r (t). 

The nongaussian suppression effect means that the difference between r       (t) 

for gaussian and nongaussian noise of fixed density and equal input power will 

decrease as the signal is increased.    The effect of nongaussian noise on the 

amount of correlation in the output depends in an involved fashion on the 

detector law, signal-to-noise ratio, and noise model, so that the discussion of 

this point is best deferred till after the presentation of some specific results. 

Figures 7,8 and 9   show r      (t)  for a quadratic detector and the three 

different noise models.    Note that the three general features of r       (t) men- 
° out 

tioned above are borne out by the figures.    For the quadratic detector, the 

exponential and gaussian models give less correlation with nongaussian noise 

than with gaussian, while for the linear model, the opposite is true.    Because 

of the simplicity of the expression for the correlation function, we can see 

quite easily why this is so.    Gaussian noise after the quadratic detector has 

one undistorted noise term (2pr , arising from s x n   interrnodulation) and 

one scrambled noise term (r   , from n x n modulation).    If the noise is non- o 
gaussian an additional n x n term enters, containing the semi-invariantA.->->(t). 

For the exponential and gaussian models, this term adds to the scrambled 

noise to make the nongaussian result less correlated than the corresponding 

gaussian one, while for the linear model, the semi -invariant term adds to the 

undistorted noise term, acting to increase the correlation over the gaussian 



TR189 -46- 

arnount. 

Table 4.3 shows the correlation functions for the linear detector.    Be- 

cause the expressions do not terminate, it is not possible to cover the entire 

range of values of p and -y .    Strongly nongaussian noise (y= 1) can be included^ 

however, because of the numerical factors involved in the Edgeworth series. 

The first correction term is about the size of 2 J\_40/4!4J    or  1/4-y.    The second 

is in two parts, one half the square of the first term or  l/32y    and one involving 

sixth-order semi-invariants, 2 JVJ6l\\t    or  l/36\   , both of which are suf- 

ficiently small to be neglected inasmuch as the first correction is itself not 

large compared to the gaussian part of the results.    The correlation function 

is much more sensitive to the dependence on signal-to-noise ratio.    The strong 

signal series is sufficiently accurate when p is greater than two; the weak signal 

series, however, can only be used for p = 0.5 at the most. 

The normalized output correlation functions are shown for the linear 

detector in Fige .   10-12.    Previously, with the quadratic detector the nongaussian 

correlation function was either always greater or always less than the correspond- 

ing gaussian one.    For the linear detector, however, the correlation is greater 

for nongaussian noise when the signal is weak and greater for gaussian noise 

when the signal is strong.    An additional complication is that the curves for 

gaussian and nongaussian noise cross each other near the origin of time when 

p is large, although for by far the most of the time the nongaussian curve lies 

below.    The curves again illustrate that the difference between the two types 

of noise is greatest when the signal is small, and that the difference is sup- 

pressed when a strong signal is present.    For the linear model the suppression 

is of higher order, so that the difference is particularly small. 

4. 6     The effect of nongaussian statistics in general 

The effect of the nongaussian statistics on r      (t) has varied in these 

two cases, depending in a rather obscure manner' on the law of the detector, 

noise model and signal-to-noise ratio, so that an investigation of general 

values of v is worth while; however, since the linear and quadratic detectors 

are by far the most important, a qualitative look at the results for arbitrary 

values of v suffices to complete the discussion of the output correlation function. 

•• 
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The primary point in question is whether nongaussian noise increases or 

decreases the correlation of the output compared to gaussian noise of the 

same input power.    We have obtained the sign of the change in correlation 

as a function of v and p for the special cases above and for various limiting 

values of v and p, but have not been able to get a really satisfactory assurance 

that no additional changes of sign occur for intermediate values of v or p. 

The best way to present the result is to show the first quadrant of a(v,p)- 

plane in which the boundaries and regions of increased or decreased cor- 

relation are explicitly labelled. 

The behavior along the lines v = 1 and v = 2 is known from the results 

of Figs. 7-12; and, in addition, we have found the sign of the change in cor- 

relation for large p and v, and for p = 0 and all v.    Appendix VII gives the 

explicit forms of r       (t) from which Fie.   13 was constructed. r out 6 

The dependence of the change in the total output power and in the d-c 

power on the law of the detector leads one to expect that the normalized out- 

put correlation function should also exhibit some such settled type of be- 

havior when v is larger than some number, perhaps not exactly two.    In fact, 

Fig.   11 bears this out.    Nonetheless, while all the information that appears 

in the figure is correct, and any additional changes in the behavior of r       (t) 

seem unlikely, it cannot be categorically stated that all the changes in cor- 

relation are included. 

The figure shows that, with the exponential and gaussian models, when 

the law of the detector is greater than two, the correlation of the output noise 

is greater when the noise is nongaussian.    Only when the detector law is less 

than two does the relative strength of the signal affect the result.    Near v = 1, 

in the shaded area; the output correlation functions for gaussian and non- 

gaussian noise cross each other so no definite assignment of this region can 

be made.    Figures  10-12 for the linear detector show, however, that for most 

of the time, the correlation of nongaussian noise is less than that of gaussian. 

When v is less than two, the nongaussian noise terms have signs which differ, 

giving a noise cancellation effect with strong and weak signals (for the specific 

equations, see Appendix VII). 
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The effect is not exactly the same in the two cases because the noise is 

different, coming mostly from signal-by-noise modulation products when 

the  signal is  strong and from noise-by-noise modulation products when the 

noj se is weak. 

The linear model differs from the other two in the decrease of the semi- 

invariants with time compared to the input correlation function. Just as in the 

previous discussion of the linear and quadratic detectors, one expects the cor- 

relation of this model to be greater than that of the other two. Figure 13 shows 

that here the nongaussian noise is more strongly correlated for all values of 

v when no signal is present, and that the band of increased correlation at high 

signal levels has moved to larger values of v . 

The magnitude of the change in correlation will be greater when the 

signal is weak or absent.    At large signal levels, the change is suppressed 

by a factor of 1/p for the exponential and gaussian models and by a factor 
2 

of 1/p    for the linear model. 

4. 7      The smoothing effect of finite time averages 

Up to now, the discussion of the output of the detector has been con- 

cerned with average values, which implies averaging over all time.    When 

the output is averaged over a finite time, the result is not a parameter of 

the output distribution as for the infinite average, but rather again a random 

variable, although one with a more concentrated distribution than before. 

In actual practice, of course, only a finite time is available in which to operate 

on the output of the detector.    The finite averaging time makes an analysis 

more difficult, but the variance of the averagedoutput can be found [ 103] . 

The effect of a finite averaging time depends partly on the video filter. 

This is a low-pass filter transmitting the low-frequency spectral zone and 

cutting off the spectral zones at the carrier frequency and its multiples, and 

is followed in turn by an ideal finite time integrator.    From the reference 

quoted above, we have the result that the variable    z  = (1/T)   /      I (t)dt, 

where T is the averaging time and I    is the low-frequency output of the detector, 

has as its variance, 



^> 

I                                                   1 

EXPONENTIAL   AND  GAUSSIAN 1% NOISE   MODELS 

NON GAUSSIAN <^ 
LESS CORRELATEr/ 

&7 NON   GAUSSIAN 
LESS CORRELATED 

1/ 

NON   GAUSSIAN \ 
MORE CORRELATED 

\ 

NON   GAUSSIAN         / 1                                                      1 V      NON GAUSSIAN 
LESS CORRELATED / LINEAR   NOISE   MODEL 

NON   GAUSSIAN 

MORE   CORRELATED 

1                                                    I 

\   LESS CORRELATED 

0 

FIG. 13   EFFECT OFNON  GAUSSIAN STATISTICS ON THE 
OUTPUT  CORRELATION 



TR189 -49- 

a2-| I   [R(t) -T^Jfl - t/T]dt     , (4.15) 

where the averages under the integral sign are ensemble averages. Notice 

that to find the variance of Z requires knowing a more complicated statistic 

of the infinite averaging problem* 

The general effect of the averaging can be readily seen.    When T is 

shorter than the time in which the output correlation function goes to its 

final value, the averaging is almost entirely ineffective so that the variance 

of Z is as great as that of I   .    On the other hand when T is much greater than 

the time in which the correlation function varies, the mean and variance of 

Z are effectively composed of the sum of independent 1 andom variables,whose 

number is proportional to the averaging time.    Thu3 for long averaging times, 

the relative variance c/7 , will vanish as  l/T.    Explicit results are in general 

difficult to obtain because t appears implicitly in the correlation function; 

however, for the quadratic detector, the elementary form of the output cor- 

relation function again leads to particularly simple results. 

The relative variance, o- / I   , is the best measure of the elimination 

of noise effected by averaging.    Table 4.4 gives the quadratic detector equa- 

tions, and Figs.     )4,  15, and  16 present graphs of the variation of 

the variance with time.    Just as before, with increasing signal, the relative 

noise output, becomes less and the difference between gaussian andnongaussian 

noise also is less pronounced.    However, this orderly sequence is disturbed 

for weak signals and long smoothing times.    The smoothing is more effective 

against the n x n component of the relative variance than the s x n component 

because the n x n part is less correlated than the other; thus, with long aver- 

aging times, the remaining fluctuation is mostly from the 8 x n component. 

At low signal levels, where the variance, even with no smoothing, is only 

slightly less than that with no signal, the variance with long smoothing times 

will be greater because the "no-signal" noise, arising entirely from n x n 

interaction, is more strongly suppressed. 

Another interesting point is that the nearly gaussian noise always has 

a larger variance tnan gaussian for all three models, when noise alone is 

• 
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present.    This behavior is in contrast to that of the correlation function 

where the linear model differs from the other two.    In fact, for finite aver- 

aging, the three models behave the same nearly everywhere in the (v,p)- 

plane,    Appendix VIII takes up the question in more detail; the results are 

that nearly gaussian noise has a greater variance than gaussian noise of the 

same input mean square, except when the signal is large and v lies in the 

approximate range 0.5 to 1.5, in which case the nearly gaussian variance- 

is less.    The boundary of the two regions is not quite the same for the 

three different models, but this is the only difference between them. 
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V 

Conclusion 

In the preceding sections, we have discussed the form of the nearly 

gaussian distributions and the physical noise sources that may be expected 

to produce nearly normal random noise.    In the previous section, the problem 

of the rectification of nongaussian noise has been considered and most of the 

important statistical parameters of the output determined in general, although 

in perhaps intractable form.    The qualitative effect of nongaussian statistics 

on the output power, output correlation function, and finitely averaged output 

have been determined in reasonable generality, with explicit formulae and 

graphs for the most important special cases. 
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Appendix I 

Stationarity 

Even though the instantaneous value of the noise wave is stationary, 

in general the slowly varying components are not; however, since the noise 

is narrow-band, to a satisfactory degree of approximation, they may be as- 

sumed so.    The difficulty is the same as with a modulated carrier, viz. , 

a phase shift is involved which spoils stationarity unless the phase distribu- 

tion is uniform. 

The importance of establishing stationarity lies in the fact thatanalytic 

results are obtained from statistical averages, while experimental results 

are obtained from time averages.    If the random process involved is stationary 

or, more precisely, is composed of stationary subsets that possess no non- 

trivial stationary subsets, then the two kinds of averages are equal (to with- 

in a subset of measure zero). 

To discuss stationarity, it is most convenient to use the ensemble 

representation.*    For the Poisson ensemble, we may use 

V(t;t',i|j) = R(t-t:) cos (u  [t-f]  - 4*>    , (1.1) 

where t1 is uniformly distributed. 

Equation(I.l) is not a random function; it is a particular member of the 

ensemble fixed by the ensemble parameters t' and i|> and as such is a 

determinate function.    At a later time f, the time of Eq.  (I. 1), is re- 

placed by t + T.    This generates a new ensemble which can be compared 

to the old one only when the time difference T"is absorbed into the en- 

semble parameters by some appropriate transformation.    After the two 

ensembles have the same time value, they may be compared to see if 

they are the same, which is the stationarity requirement.    In this case, 

T can be added to t', 

v(t +r; t«, v|i) = V(t; t' - r, 4>) • (1-2) 

Since t' is uniformly distributed the translation by r will leave the overall 

ensemble invariant. 

*An ensemble is a set of functions together with a probability distribution 
defined over the set. 

-52- 
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For the in-phase and quadrature components, a further restriction 

is needed.    We have specifically 

X(t;f,4;) = R(t-t') cos (COQ t' + ty) | 

1 (1.3) 
Y(t;t',i{j) - R(t-t') sin {UQV + «|I)   J 

and 

X{t + r;V ,\\i) = X(t;t' -r, 4# + w   r)    . (1.4) 

This last equation indicates thats for the slowly varying components 

to be stationary, the phase must be purely random as well as the time t1; 

however, the narrow-band character permits a relaxation of this result for 

nearly gaussian distributions. 

Since we have a Poisson ensemble, the semi-invariants of X and Y 

are simply related to the moments of the individual pulses. 

^mn= <XmYn>= Y   ^^i t-*'] ) cos• [u^f + +] x sin" [u> QV + *] > av (I. 5) 

The trigonometric part can be written as a Fourier series and each term 

interpreted as the sine or cosine transform of h (P[t-t']), evaluated as 

a multiple of the central frequency, (the phase may be absorbed in t1 since 

t' is uniformly  distributed).    The pulse envelope varies much more slowly 

than the central frequency part, so that its transform will have hardly any 

spectral components at the central frequency.    This will also be true of the 

transforms of the smaller powers of the pulse envelope, so that all terms 

in the Fourier series may be neglected except the leading one, correspond- 

ing to the zeroth harmonic, which gives the isotropic result.    Thus, for 

nearly gaussian noise where the higher-order moments are negligible, the 

distribution is effectively isotropic.    The conclusion can not be extended 

to a narrow-band distribution in general, because of the different behavior 

of the high-order moments .    Since the energy in an individual pulse is 

finite, the pulse envelope must either last for a finite amount of time or 

vanish sufficiently strongly at infinity.    Taking powers of envelopes of the 

decreasing class will increase the rate of fall and broaden the spectrum, 

until, for large values of m+n, the spectral components at harmonics of the 
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central frequency are no longer negligible and the distribution thus not 

isotropic. 

Table I. 1 illustrates the >.bove remarks, for three different types of 

pulse envelopes:   (i) exponential pulses, characteristic of a single tuned cir- 

cuit, (ii) gaussian pulses, characteristic of a multi-stage amplifier, and 

(iii) square pulses of finite duration.    The duration of the major part of the 

pulse is  1/p, so that p* is roughly half the bandwidth of the i-f circuits in- 

volved; accordingly, the ratio of harmonic term to isotropic term is ex- 

pressed in terms of Q, the reciprocal of the fractional bandwidth.    Frac- 

tional bandwidths in radar are about 0.1, so that the moment for which a 

harmonic term first reaches 5% of the isotropic one is the fifth moment for 

exponential pulses and the thirty-fifth for gaussian pulses.    Square pulses 

do not present the same problem, since all the moments behave the same 

as far as the relative contributions of harmonics are concerned; for the 

assumed Q, the first harmonic is 5% of the isotropic term and higher 

harmonics all contribute less. 

The above remarks show that, for nearly gaussian Poisson ensembles, 

isotropy follows from the narrow-band structure, so that the in-phase and 

quadrature components are stationary under the same restrictions as 

placed on the instantaneous value; this is sufficient for our purposes. 
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Table I. 1 

Envelope Moments and Spectra 

h(Bt) 

Pulse envelope 

•NOO 

/      hm(St)cospwotdt 

o p <; m 

h    cospw t dt/j     h    dt 

e-Pt m p 1 

(mP)2 + (pa,o)2 
1 + <Pm )" m 

2     2 
p  w 
^     o 2^2 

P Q 2 2 2 
e"S ' »  /    IT       c   4m p" m 

V 4m p 

1    0<t<p_1 

o   fx<t 
sin pw/p 

p w 
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sin 2pQ 
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Appendix II 

Nearly Gaussian Distributions in Terms of Parametric 

Derivative a t 

This series is useful when the noise ensemble has a phase uniformly 

distributed, independent of the envelope.    As has been shown, nearly gaussian 

narrow-band noise waves have a structure equivalent to this.    Thus the 

random variable to be considered is 

Z(t) = R(t) cos [w t - 9(t)]    , (II. 1) 

where 

W(R,0) - fw(R)/2ir 0<  6 < 2TT , 

[_ 0 elsewhere. 

The first-order moments are easily calculated. 

^u  =   <RU>av/       cosU(Wot-e)d6/2ir> 

•p^ . n+1, 
_ [1 + (-l)n]   '    (~2~} 

2      v?n|+D 
<RU> . (n.2) 

^2u+l 
= 0 

and oo 
FzO)=Xlrlh(i3)2k • en. 3) 

k=0 

The odd semi-invariants are also zero, as may be seen by comparing 

their power series, Eq.  (2.5), with the one for the moments.    We have 

accordingly 

-55- 
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OQ CO 

k=l m=l 

oo 

k-1 

<-i>k-\ 
CO 

^2m      ,. >-v ?.m 
rz^r d5)' 

m=l 

(II. 4) 

Since only even powers appear in the series for the moments, the same must 

be true i 

quently, 

be true for the serni-invariant series, which implies thatX..,,  , .  = 0.    Conse- 
ZK+ 1 

Fv(B) = exP' 

CO 

k=l 

2k 
(II. 5) 

The exponential can be expanded in a power series except for its 

first term; the leading terms will be 

r2(5) ^^)4 + ^(i5)6 + -^-^(iy+0(v-3) oT 
2!(4!)' 

(II. 6) 

Clearly this equation can be written in terms of derivatives with respect to 

\\t, viz.: 

^•I'-^-fc'S-i^^-v 
^5 

(II. 7) 

The corresponding series for the second-order distribution is more in- 

volved, since the narrow-band structure appears explicitly in the moments. 

The second-order moments are 

u      (t) =<R•R*>       <cosm(w  t   -9.)cosV  [t  +t]   - 9,)> rmn \     1     2 4v    \ x  o o     1 x   oL  o    J 2 'A 

which gives, after expanding the second cosine, 

av (II. 8) 

n-k, 
^mn(t) =   *lR2>av2_^~I)     <C°8       K'-V*•  <V8»( 

k-0 
6 av 

x <co.
m+n-k(„oto-e1).ink(Woto-e1)>ei av,(ii.9) 
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where 
e --- G2 - e:    . (ii.9) 

The average over 6. will be different from zero only when both k and 

m +n- k are even; thus all odd-order moments again vanish.    As before, 

the same is true of the semi-invariants.    The average over the phase 

change, 6, must be postponed until the end in order to use the series of 

derivatives.    The first set of terms in the semi-invariant series, Eq. (2.5), 

is 

-I^131
2+ 2^ro513zcos(Wot-e) + qJ2 52

2]   , (ii.io) 

where the subscripts to the i|>'s have been inserted to permit differentia- 

tion of each of the terms separately,    in order to obtain a series in 

parametric derivatives, it must be shown that the appropriate powers 

of 5,. B?» ana cos(u t - 8) in a given term of the expansion of the exponent 

can be found by taking appropriate derivatives of the expression in Eq. 

(II. 10).    Since k in Eq.  (II. 9) is even, the sine factor can be expressed 

in terms of cosines and expanded, so that the m, nth moment term con- 

tains 5 i 5*o cos      (<*> t-8), where m+n and j are even, and j<n.    Then by 

taking n-j derivatives with respect to \\tr   , j/2 derivatives with respect 

to 5?» and (m-n+j)/2 derivatives with respect to ^., the explicit dependence 

on both the variables and the narrow-band structure is suppressed.    This 

is a total of (m+n)/2 derivatives, just half the number an Edgeworth series 

would require,    Once assured that the series can be written down, it is 

easier to find the terms directly, rather than to search for a general 

formula. 

For Poisson noise, the leading terms are 

vll     t   f\    /"fi   .  ^0 5l4  ^A31(t)cos(V-Q)       3 F2(V52
;t> =< y + —Ti + JT $i   52 

+^15^/[2cos2
(Uot-e)+1] +^Co8(ttot.e)U3+^o ^. 

'{-7l+i51
2+2*'0515!Bco.(Mot-e) + +252

2].> eav, (ii.ii) x exp. 
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giving a.t once 

•58- 

xexPJ-~[4i1B1
2+24iro51B2co8(wot-e) + 4i252

2] >Q        .    (11.12) '6 av      ' 

+l=+2=+ 

After the derivatives have been found, the subscripts are no longer 

desirable since the noise is stationary.    Eq.  (II. 12) is the natural generaliza 

tion of Eq.  (II. 7) as can be seen by expressing the differential operator in 

matrix form 

*-A-VKi'+5Tii4r*F:4i 

\oMlJ 8 

A31A2ZA13 
8 

6*A0 

AzA3
A40 

8 
9+2 

1 
xF2(Bi'52

:t) 
gauss > 6   av ' 

4>1=+2=+ 

(n.i3) 
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Appendix III 

Envelope and Phase Distributions 

Often the distributions of the slowly varying components are needed. 

It is obviously desirable to relate these to the distributions of the instan- 

taneous value which are usually previously known.    Again it is most con- 

venient to work with the characteristic function and the series for the 

moments.    The in-phase and quadrature components are defined from 

Eq.  (2. 19), V(t) = X(t) cos w  t + Y(t) sin w t.    The first-order moments 

are then 

=   ^myns        =  ^Rm+n cosm        sinn     y 
^mn       N ' av       x f av 

The characteristic function when written in polar coordinates is 

CO 

Fx Y(pcos <t>, psintf) = 2" ^j^ (ip)m  ncosm^ sinn«J (in. 2) 

M=0 
m+n*M 

Substituting Eq.  (III. 1) in Eq.  (III. 2), and using the binomial 

theorem on the terms of fixed value of M, we find that 

Fx>Y(pcos^P8in^) = 2_^ ^i- <RMcosM(e'-^)>av (III. 3) 

M=o 

If 9 is independent of R and uniformly distributed, the average may 

be carried out to give the Mth moment of V; otherwise, the shift in the 

angle by an amount 4> may change the value of the average so that it is 

not th*v Mth moment.    In the former case, we have the desired result 

FX Y(pcos «*• p sin ^)= FvM (in.4) 

To obtain the distribution of the envelope alone, the restriction 

may be relaxed.    In general, we have that 

*oo    />2TT 

W(R'6>  '•  -T-T.   I       I pdpd^eipRco8(9-«l)FXjY(pcos«iI psin«i)    . 

-59. <in-5> 
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The integration over 0 can be performed, after which </> will appear only 

in the characteristic function.    Then the cosine factor in Eq.  (III. 3) can 

be averaged over </>, which is now isotropic, making the distribution of 

9' in Eq. III. 3 immaterial.    The final result is 

W(R) = R/     pJo (pR)  Fy(p) dp      . (UI.6) 

This equation is stronger than the usual relation between the Hankel 

transform and two-dimensional Fourier transform of an isotropic function^ 104]. 

For one thing, the condition of isotropy has been shown to be unnecessary 

here; furthermore, when the characteristic function is isotropic, it is not 

only a function of R alone, which is true in general, but also is a function 

with physical meaning as a one-dimensional Fourier transform (Eq. III. 4). 

The extension of these results to second-order distributions is easily 

accomplished.    The moments are 

u       (t) = <X•Yn X? Y^ >       =  <R"1+nRP+qcosmei8inn01xcosPe?sir<ie.>a nmnpq      N112     2/avNl 2 1 1 2 ^ /av 

(III. 7) 

The characteristic function can be put in the form corresponding toEq. (III. 3), 

namely, 

F2X Y^I
008

^!
1
  Pi 8in *\> ?z COS ^2' P2 8in ^2* ^ 

oo        ..     .M..     -P 
V"7 (ip,)     (ip?) JJ.     p x/f T> 

=   Z^ M!P! <RV R2  cosM(e'1^1)cosP(6^2)>av  (III.8) 
M+P=0 

If 9    is uniformly distributed, the average can be carried out, giving 

F2X Y*
P

1
COS

^1'
P

1 
8in^i; P2co8<i2' P2sin^2;t^ = F2V^ PrP2;t,COS^2"^l^ ' 

(III. 9) 

that is, wherever cos w t appeared in the characteristic function for V. 
o 

cos («i_-^.) will now appear. 

If the distribution of 9. is not required, then, as before, integrations 
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over first 6., then 4,  gives the analogue to Eq.  (III. 6) 

oo     oo    2TT 

where 

*/ / / 
W2{R1,R2,e,t)=R1R2J     J   J     ^dPldp2PlP2 

o       o     o      '  w 

1/2 
x Jo^PlRl + P2R2 + 2P1PzR1»-2C08(e-flJ)]      ) 

xF2v(prP2;t,cosrf)    , (I.U. 10) 

6 = 92 - 8j  ,     and     4> = 4>z - 5^ 
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Appendix IV. 

Clutter Fluctuations due to Movement of the Scatterers 

If the scatterers in one resolving volume move between pulses, e.g., 

are blown by the wind, then the position of the kth scatterer will change 

in the time t by an amount d,   = v. t, where v,   is the component of the 

scatterer's velocity along the radius vector to the radar; t is assumed 

short enough so that v,   is constant.    The change in distance will alter 

the time of arrival of the pulse reflected from the scatterer by an amount 

AtJ   = tL,   - t',,   =  2v,t/c.    The clutter return at time t    is then 

K t,-t' 2v, t 2v,.t 
V^=Xj2*h ("V^ " "dM  co8K(tl+t> "WT "IT- - *2k 

k=l I 
(IV. 1) 

Because the start of each transmitter pulse serves as a new origin 

of time, the time difference t = t, - t., appears in the envelope factor only 

in tL, the time of arrival of the new transmitter pulse; furthermore, the 

phase change in the rapidly varying part depends on the transmitter fre- 

quency, uiT, not on the i-f frequency, u>    .    From this equation and Eq.   (3. 1) 

the semi-invariants are found to be 

/*> y m   n      /        ,rn.   >, n 2vt. m.      _       ,   , 
Xmn(t' - * <a la2    / h    <*>h(x+—)cos     (w/X-^) 

^oo 

x cosm(o)   fx+u_ — +OJ t -dj,)dx> , (IV. 2) 
o T     c        o      Y2       /av 

where x = t/ <f. 

The effect of moving scatterers may be illustrated by studying 

the correlation function .    We have 

xn(t) 
r(t) • -* = r  It) cos (u  t + a)     , 

/v20 ° ° 

-62- 
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2io>   vt 

ro^ = ra(t)|<rh^e     C >v(4,av 

<rh(Z^)sin(^^-,)>av 

tan a   =   -r y-r        . (IV . 3) 

2 
Here *|i = i|*2 - «|*j,     r^t) = ^a^a^j (a.   y 

and 
/^OO -co 

rhltl=    /        h(x)h(x+l)dx/   /       h2(x)dx      . 

This equation corresponds to the one first found by Siegert,[ 105] except 

that here the pulsed nature of the clutter is included in the analysis, ap- 

pearing through the correlation function of the pulse envelope 

rb(2vt/cf). 

In particular situations, the correlation function is usually simpler 

than Eq.   (IV. 3) seems to indicate.    Almost always the motion of the 

scatterers varies the envelope dependence so much more slowly than the 

phase factor that the envelope correlation function, i"u(t), may be taken as 

unity during the time of significant variations in r   (t).    The pulse envelope 

correlation function will drop to near zero when the argument, 2vt/cT, 

is near unity, i.e., a time difference comparable to the pulse duration. 

One can argue that up to ZwXIcf ru  0.1, this correlation function may be 

taken as one.    Then the velocity average becomes 

of 
co 2i<*>Tvt n~7XFr   ^u>Tvt 

rh(|~)e     c      W(v)dv =   / e     c        W(v)dv (IV. 4) 

'-oo ^-cT 
2"0T 

With a 1-usec pulse, these limits are —'-—, (velocities in m/sec), so that 

if the probability of velocities exceeding this limit is sufficiently small, 

the limits on the right-hand side can be made infinite, giving 

2ia)Tvt _ 

<rh<!r>e c     >v = Fv(-cL-)   • <IV5> 
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where F    is the characteristic function of the velocity distribution.    A 
v ' 

reasonable upper limit on significant velocity values is v + 3c, which 

for "window" is about 2-5 m/sec.    Thus up to times of the order of one 

second, the correlation function assumes the simple form of Eq.  (IV. 5). 

The argument of the characteristic function is then sufficiently large, so 

that the correlation function r   (t) is negligibly small. 

As a specific illustration, consider the case of square pulses reflec 

ted from clutter with a. gaussian velocity distribution.    Then 

2iwTvt 

=!«'• 

2i"Tvt 

<>h<T?>«      '   >   1 
2vt.            c        x 

-c-T)e                  > 

*ld*J:^)»vt^)| 

A     2 *2 

,   2    2   2 
2o>vMT t 

 Z  

1 - vt (6.7xl0"3) -ic2t2 (2.5xl0~2) 
-C2t2 800.0 v (IV. 6) 

Clearly, the exponential will ensure the effective vanishing of the whole 

expression before the effect of the envelope correlation function can be 

felt at all,   even for the case of an airborne radar measuring ground clutter 

(v*/^j500 mph = 250 m/sec, ff ^_/lm/sec). 

The normalized correlation function of Eq.   (IV. 3) is thus 

2w   t 

^<t>-Vt>|rv<-r->V*1'l;t) (IV-7) 

where F  (t  ,^ ;t) is the second-order characteristic function of the phase. 

Furthermore, the change in amplitude of the return due to the change 

in range is so small as to be negligible, so that the amplitude correlation 

function r  (t) depends only on changes in aspect of the scatterers with time 
Or 

• 
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Where the aspect of the scatterer either changes very slowly or does not 

affect the amplitude of the return (e. g. , "window" sea return), then r  (I) 

is also unity.    The phase of the scattercrs, iU , is usually the same from 

pulse to pulse so that the correlation function reduces to the magnitude of 

the velocity characteristic function alone. 

Not very much is known about the velocity distribution of scatterers. 

T.S.  George [106] has considered the problem of a moving radar and fixed 

clutter, obtaining fluctuation values through numerical integration without 

explicitly calculating the correlation function.    Both Hilst [107]  and 

Fleisher [108] have studied the inference of velocity distributions from 

experimentally observed correlation functions; however, as yet the time 

dependence of the correlation function is not a settled question.    In par- 

ticular, all of the three types of time dependence considered in section IV 

of this report are valid possibilities on the present experimental evidence. 
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Appendix V 

Output Power 

To calculate the output power requires finding a general moment 

of the input envelope, as Eq.   (4.4) shows.    Using the nearly gaussian 

envelope distribution, Eq.  (2.26), we have 

R2+A   2 

The integral is a generalization of Weber's exponential integral{109] 

well known to give 

<R2viv= [i + ^^^W'^r^M^Y^;!;-?) (v.2) 

2 
where  . F. (-v; l;-p) is the confluent hypergeometric function and p =A   /2IJJ 

is the input signal-to-noise power ratio.    The indicated differentiation can 

be carried out most easily by using the series for the hypergeometric 

function, (Eq. VI. 8), to give the final result 

<RZv>av =T(^+1)(2^)V [ 1F1(-v;l;-p) + -^v(v-l)1F1(-v+2;l;-p)+0(v"2)] 
3 !ijj 

(V.3) 

For the d-c power, the square of the vth-moment is required, which 

is found by replacing 2v by v in Eq.  (V. 3).    The 2vth-moment is slightly 

more convenient to use in discussing the nearly gaussian correction term 

so the next paragraph treats only the total power. 

The nearly geiussian deviation in total power, as a function of v and 

p, depends on v(v-l) .F .( -v+2; 1 ;-p).    The general behavior of the hyper- 

geometric function can be found by examining the cases of integral v, 

and interpolating, which is possible because the hypergeometric function 

is a continuous function of its parameters.    A graph of these functions is 

shown in Fig.   17.    When v is greater than one, both v(v-l) and the hyper- 

geometric function are positive, so the correction term is positive.    When 

v is less than one, v(v-l) is negative; and the hypergeometric function 

-66- 
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changes sign at a value of p greater than one.    Thus the correction term 

is negative if p is less than one. and is first positive and then negative 

if p is greater than one, the zero of the correction term moving toward 

v =  1 as p increases. 

•*> .. 
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Appendix VI 

Evaluation of the Output Correlation 

Function 

The total output correlation function is given by Eq.   (4.8), 

RT(t) = /^T  /^f(izl)f(iz2>F2<Vz2>F2<zl'z2>sig (VI. 1) 

All the functions appearing here are known except for the characteristic 

function of the sine wave signal, which can be evaluated from its defini- 

tion as an average, as done below.    To form an ensemble from the 

determinate sine wave, we take a random phase as the ensemble par- 

ameter . 

X(t;tf) « A    cos (o>  t + 6)     , (VI. 2) 

where 

Then 

W(<4) * J-     6<lv 

0       «i>2ir 

-2w 

F,(z,,z,)   .    =-5— 2    1     2 sig    Zt 

iz.A   cos(u t +tf)+iz,A   cos|w [t   ft] + <i>) lo 00 2o oloJ 

drf 

V1—2 2  
Z,     + Z-.    +2z,Z-,COSGJ    t) 

I            c.               1    L                  O 

CO 

^ 
n n     o   1      n      o   / o 

(VI. 3) 

n=0 

where we have used well known formulas of the theory of Bessel functions. 

The characteristic function of the noise is 

I     1 2 2 
>(zl>z2) ~ U + L]exp.J - 2"[4*!z!   +^2

Z2  +2^r
Q
zlz2 co80J

o
t]   • (VI. 4) 

i|il«i|i|j=«|i 
where L is the differential operator in \\t., vjj, an(* ty*    4^at appears inEq. (2. 18) 

-68- 
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The correlation function can be separated into its zonal parts by 

expanding the trigonometric term in the exponent of Eq.  (VI. 4) as a 

Fourier series and combining with the Fourier series of Eq.  (VI. 3). 

The result is 

oo CO 

€     cos m u t m o 
n = 0 i = 0 

2 /dZlr(v+i) 
* 1      2 dz. 

*3 

p   / -sr—TV+T 
e WiV -ar..  Tvn e J

n
(Aoz2} 

'C (izl> (iz2) 

x[(-l)m+n€ I (4ir   z.z.l+ (-l)lm"nL. .1. ,(4>r   z.z,)]. LV     ' m+n  m+nVY o   1   t     N |m-n|   Jm-n|XY o   1   2'J 

(VI.5) 

This equation may be further simplified by noting that, for the 

receiver problem, only the low frequency zone, m=0, is required.   Then 

the two contour integrals may be separated by expanding the modified 

Bessel function in a power series, giving 

o.n+2k 4»r oo       co^       r   o.nH 

n=0   k=0 

where 

H    . (A   ,z;) _BT(V+1) 
r 

Hn.k<Ao'«l)Hn.k<Ao'B2> 

di.z. -Xi 

(VI. 6) 

• l*^** 

-, n-       dz. e J  (A  z.)z. 
n,k     o    j     2iri / J J 

and the low-frequency correlation function R(t) appears.    The H    ,   func- 
rijK 

tions may be evaluated by taking as the contour the real axis indented 

downward at the origin   (see sec.  4 and App. Ill of ref.   100). 

2 

H    .(A   t«.)»PPW)  [l-(-DV]/ n,k     o    j     2Triv+l y 

dj.X 
CO \] 

n+2k-v-l    "-? 
J  (A  x)dx   , 
n     o 

provided n + k^> v/2, so that the integral around the indentation vanishes. 

'V .. 
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The real integral is Weber's first exponential integral [ 110] , so that the 

final result is n v    n+2k 

Hr k^o-'i' = v ^-^ {~l)        -* K\ ,F (-£+n+k;n+l;-p ) n,K     o    j 2T(—+D 
2 (VI.7) 

2 
In this equation, p. = A    /Z\\i., and ,F.  is the confident hypergeometric func- 

tion.    The generalized hypergeometric function is defined formally as 

P 

^—7     _,     1'n     n 
F  (a.,...a  ;b.,...b  ;x)s  >     i-i    ^    , {VI.8) 

p q   *        P    l        q       Z x  q n! 

i=l      n 

where 

i i=o 

In this report, only the three functions  ,F., ?F., and ?F~ are needed. 

Equation (VI. 7) is an integral function of n + k - v/2 and, therefore, by 

analytic continuation H    , (A  ,z.) equals the right side of Eq.  (VI. 7) with- 

out any restriction on v.    The correlation function is thus 

n n+2k 
oo       GO . J7- , , 2     2 \     Z 

€n(PlP2) /+  *0   \ ,    Vv2 

XZ_^  ^k^^n)!  \ +1+2/ ("7)n+K 
n=o    k=o \        /       \ 

x 1F1(-|-+n + k;n+ 1; -Pj) jF^- j + n + k; n+ 1; -p2) (VI.9) 

^i=+2=+ 

By expanding the hypergeometric functions and summing over k, 

an alternate form may be found, viz., 

•• 
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R(t).!,,,.] iVWi^if 

co     cr> 
°°        €    (-l)i + 

i + r2~      J+2 

X/   V   V    > i! i!(i+n)!(i+n)!n! 
n=o  i=o  j=o 

1*2< 
t-^i+n^^j+n 

x2Fl( 2 

.2     2 
4i r 

i+n, -T+j+n;n+l; —,—.— 
2 4,^2 

(VI. 10) 

4'1
=4»2=4» 

When p is small, this last is the better form, since it is a power 

series in p.    For large p, the ordinary asymptotic expansion of the 

confluent hypergeometric function may be substituted into Eq.(VI.S) to 

give a formal asymptotic expansion of the correlation function 

JFJU^-X^II^LJ x"a 2F0(a,l+a-cfi) + O (e_X) (VI. 11) 

|x|» a x j» c 

2x   v 

4P4(i+l) VV 

CO CO 

:c 

n=o   k-o 

* -, •>        r    n+2k 
 n /   v.2 .   v.2      ,_o. 
k! (k+n)!   v"2'k v    2'n+kvp' 

x2F0(-^ + n + k'-I+k;pT)2F0(-I+n + k'-i+k:
P7)-  <VI"12> 

Notice that as p tends to infinity, the correlation function reduces to 

that for the signal alone, as it should; however, the asymptotic nature of 

the equation is not assured ac present, since Eq.   (VI. 11) is not valid for 

values of n and/or k comparable to or greater than p.    In these cases, by 

using the asymptotic expansions appropriate to n>>>p,k; k^>> p, n; n,k!^*> p; 
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n = p; k = p; n = k = p; [111] it can be shown that the leading term in the 

asymptotic expansion is of exponential order.    Thus the terms which are 

neglected in using a finite part of Eq.  (VI. 12) are actually of even smaller 

order than the equation indicates so that the asymptotic expansion is valid, 

with the restriction that p must be larger than the largest value of n or k 

appearing in the finite approximation.    In the event that v is an even integer, 

all the series involved terminate, and the left-and right-hand sides ofEq.(VI. 12) 

are equal. 

The remaining step is to evaluate the derivatives contained in the operator 

L.    The strong signal case, Eq.  (VI. 12), contains only positive powers of the 

quantities to be differentiated, so that the result is simply obtained using the 

formula 

-j—  ..Fn(a,b;cx) = abc  ,FJa + 1, b + 1; ex)      . (VI. 13) ax  L   u c   \) 

The result is; in abbreviated form, 

co     oo 

RU      4rV+l)      *      l^ls   kl(n+k5!(T* 
2 n=o k=o 

P    •> ^n j\,,(t)+Ai,(t) r"1 

x   y(0) + —|^g-(2)3(0)+    31     2   2
13      (n+2k)(-^)   x^(l)tf(0) 

L 3p >\> 3p 4« 

3p  i|i 

where 

A? ?^t)     , r    -2    7 7 
^z-[i(n+2k)(n+2k-l)(-^)    3 >)+3^( 1)] (VI. 14) 

The weak signal case is more complicated; but with the analogue 

of Eq.  (VI. 13) for the ^F, function, and the additional formula 

-£- [x   ^^a.b-.cjx)]  = ax F^a+l.b; c; x)     , 

the result corresponding to Eq.  (VI. 14) is, also in abbreviated form, 
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*<«).pYr"<*>'v 
OO        OD (X) 

k=o  m=o   n=o 

t   .   . .m+n      k   k+m+n 
k*'1* ro   P 

a k!(k+m)!m!(k+n)!n! 

x4o^ nn, A31(t)+Ai3(t) 2r 
x^(0,0,0) + -3J^(200) + 

L 3* V 
[|-OK1,0,0) + ^^<2,1,1)] 

A„(Or v22 

34> 
M^£(0,0,0)+B+£2tl,l,0)+ 7 ^(2,2,2) 

k+1 (k+lHk+2) 2r 
L      o 

where 

?<a,b,c> = {-^)k+m+a(-7)k+m+b ^^-^k+n+a.-^k+m+bjk+l+c;^2)  , 

When v is an integer, the hypergeometric functions reduce to polynomials 

if v is even, or to complete elliptic integrals if v is odd. 

• 
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Appendix VII 

Effect of Nearly Gaussian Statistics on the Output 

Correlation Function 

To determine whether the correlation in the output is increased or 

decreased by nongaussian noise as compared to gaussian noise, we study 

various special cases of r     At). r out 

When pis large, we may use the strong signal expression for the 

correlation function, Eq.   (4. 13), to obtain finally 

r     At) = r     At) out out     gauss 

[2<i>2+^- i) 

A31(t) +A13(t) 
zA 40 

+ 0(p-2,v-2)t (VII. 1) 

For the exponential and gaussian models, we see from Table 4. 1 that the 

semi-invariant expressions in the inner braces are negative so that when 

v is greater than two> the output correlation is reduced.    When v is quite 

small, the second term alone is important and again the output correlation 

is reduced.    Near v =  1, the sign of the change in correlation varies be- 

cause the output correlation functions cross each other.    The boundaries 

between this region and those in which the nongaussian output correlation 

is less lie in the ranges v = 0. 4-. 6, 1.2-1.4 for both models. 

The boundary is not sharply defined since inside the region the gaussian 

and nearly gaussian curves cross each other. 

For the linear model the nongaussian part of Eq.  (VII. 1) vanishes. 

We must then star-: again from the general strong signal result, Eq. (VI.14), 
-3 including p      terms specialized for the linear model.    Carrying this 

procedure through gives 

r -t(t> = '     t<0 out ut     gauss 1 - 
1  - r  o 

64p  -y 
[7v4 - 54v3+ 126v2 - 128v + 56] + 0(p~3

Y~
2 

(VII. 2) 
-74- 
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The difference between gaussian and nongaussian noise is of smaller 

order here than for the other two noise models.    The polynomial has 

two real roots, when v equals  1.55 and 4.54, between which points the 

nongaussian result has more correlation. 

When no signal is present, Eq. (VI. 15), which contains hyper- 

geometric functions., must be used. The behavior of the correlation 

function as a function of v is then still too difficult to predict for all 

times I; however, by expanding the hypergeometric functions in powers 
2 2 

of r     (t) and 1 - r     (t), the change in correlation can be found separately 

for large times and small times.    Since the two results agree, we have 

confidence in the indicated answers. 

For large times, the input correlation function is small and the 

expansion of the hypergeometric function around the origin is appropriate 

(Eq.   (VI. 8)).    The normalized output correlation functions for the noise 

models are then 

r       (t) = r    J   i + O [y     , v   r     /4]^ , exponential model (VII. 3) 

r     Jt)=r   2J 1 -^— (3-2^) + 0[Y"2,v2ro'74H gaussian model (VII. 4) 

r     At) = r   Z\ 1 + -i + 0[Y"2, V
2
/4] out o    j r y linear model (VII. 5) 

These equations indicate that nongaussian noise of the linear type is al- 

ways more correlated than the corresponding gaussian noise, with identi- 

cal results for the exponential and gaussian models when v is less than 

two, and opposite results for v greater than two. 

For small times, the expansion of the hypergeometric function in 
2 powers of 1 - r      is needed. [ 112] . 

•<•• .... 
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F(a,b;c;z) = F(c)r(c-a-b) 
f (c-a)r(c-b) F(a,b;a+b-c+l;l-z) 

, T(cJP(a+b-c) ..     .c-a-b_. , ...   .      . + -p(a)V-> (b) Ml-«) F(c-asc-b;c-a-b+l;l-z) (VII. 6) 

Integral values of c-a-b, which correspond to integral values of v, 

are exceptional; however, the modifications of Eq.  (VII. 6) that are then 

needed when v is greater than one are of higher order than the terms ap- 

pearing in Eqs .  (VII. 7-9)[ 113] .    For the linear detector the results are 

already known (Table 4. 3) so that a special treatment cf this case here is 

unnecessary. 

The normalized output correlation functions are 

exponential model: 

r     .(t) = r       (t) cut out     gaus s 
Amd-O v40 

484/ 

r2(7+i> 
 °     -^[30-4-—,.n   (v   -t-Zv-4)] 

1  - Li   2 , r- nv+Tf 

 „  v —i, + 0(v      (1-r    )   ) 

3vJ/ [x r(v+i: 

v
73 r (v+D 

(VII. 7) 

gaussian model: 
2,.   2 AAn(l-r 
d)Zv 

r    ,t) = r    it)        n.._i0 °' out out     gauss | -r-»2,v 

r(T+i)F(T+2)- 

linear model: 

r     Jt) = r       ft) cut out     gauss 
1+. 

Awd-ri) 

r (v+D 
+ 0(yZA\-rl)Z] 

(vn.8) 

Vz&+» 

48i|< L*T(v+i)J 

3 3  2^,     ,. v —yv +2v-2) 

A40(> 
(VII. 9) 

>r  i n2+1)i 
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Appendix VIII 

The Effect of Nearly Gaussian Statistics with Finite Averaging 

When the signal-to-noise ratiois large, the output correlation func- 

tion is comparatively simple, Eq. (4. 13), so that the variance for general 

v can be /ound. following Eq.  (4. 15), 

exponential model: 

2 
O", = ^|[2 + v(p)(1+_L)][e..x + x^] 

+4vi(i-i)[e"3x+3x-^+o(p"2^"2)> 
gaussian model: 

<x 2    V^K 
[2+^j*<£> 

+ v(v-2),(rtJ) + 0(p-2   Y-2) 

PYA/STT 

x   [ p Zp'JT 

2vV¥ 

(vm. i) 

3x 
y(y-2) 

3PYV^ 
i[e      4    -1]  +0(p"2, Y"2) (VIII. 2) 

-77- 
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linear model: 

•78- 

2 1 
+ £[(£)2 + (£-l)2]  [3-2x+^-]+0(p-2,^-2)|   ,  x< 1; 

„ ? 
+ 4-[(?   +(1_1)  ] [4*-l]+0(P    »Y    ) x> 1; 

where 

x = PT 

and 

K = _   p¥2(v-H) 
4r*S+1) 

34 

(vm. 3) 

When the signal is large, the nongaussian terms are all of higher order 

th.m p      and so will not appear in I   , to the order used above.    Thus 
2 —2 the effect of the nearly gaussian statistics on <y /I     is entirely fixed by 

the terms appearing in Eqs.  (VIII. 1-3).    For large x, the variances re- 

duce to 

exponential model: 

2    2K L. ,    i.   r0VyV     , * ,   . v»2    ,v     ,,2-, 
°E=ir[2+2f[82<2-1>+12!    r«T-Li   J 

•^i<5-»*i«5»z4«»-I>,i 
^.   -1        2      -2, 

(VIII. 4) 

•••• .. 
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gaussian model: 

-79- 

"e^l^^k [*2 + •^~1)+ '*"1,2) 

PTfA/Tir 

linear model 

*       r/v\2 ,   4  v ,v     i\ , 1 /V     ,.2-1 , _.   -1 1     -2 
-"!' "vfl^^^^vi (vm.5) 

"l-^iW^w-"^-^ 
,vx2 + W2*  +4I<V ^i" X) ] +°(x    •*    • V 

2. 
(VIII. 6) 

The nongaussian part of all three of these is positive for large and 

small v and negative for v near one.    The two values of v at which the non- 

gaussian part of the variance changes sign are for the exponential model 

0. 33 and 1.42, for the gaussian model 0. 38 and 1. 33, and for the linear 

model, 0.46 and 1.26. 

For the no-signal results, it is most convenient to start from an 

alternate expression for the relative variance. 

R(t) -I   _ R(t) - R(oo)       R(0) - R(oo) 
~~^l R(0) - R(co)   '        RlooT 

(VIII. 7) 

This form enables us to use the results already found for the behavior 

of r     ,(t).    For noise alone, from Eqs.  (4.5, 4.6), we have 

Po"Pd-c_r(v+l) 
d-c    r'£+n 

(VIII. 8) 

so that the nongaussian part of the power ratio is always positive.    The 

relative variance is then 

£< £r>/ out (t)[l-L]dt  , (vin.9) 
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in which 1  - t/T is always positive. 

Since r       (t) is always greater for nearly gaussian noise   for the 

linear model, it follows immediately that the nongaussian variance is 

always greater.    When v is less than two, the same is true of the ex- 

ponential and gaussian models; however, for these, when v is greater 

than two, r       (t) is less for nongaussian noise, so the answer is not im- 

mediately obvious.    For the two models with r       small, from Eqs.(VII. 3,4) 

exponential model: 

R(t)-r2     z P(vn) f.  r%+1^ i r z        r   rt|+i)r- 
-p ro TZ^f-TTvrrr^r +4<a-v,ll-rT5nr[ 

+ 0(Y-2,ro
2)[ (VIII. 10) 

gaussian model: 

R(t)rr
2.r z p(v-n)< 

vl      ° pSTT) 
rtJ+D   i 

1_r(v+i} f 
eyV^L 

>4(2-v)(3.2^){l-rT1=rn.} 

+ 0(T-2, rQ
2)f (vm.ii) 

The nongaussian part of both of these are now positive for all values 
2 of v.    When 1  - r      is small, from Eqs.  (VII. 7,8), we have 

exponential model: 

S^-r^it) ry+i) 
ouf'gauss p2.v^+1v 

1 - 
^{l-tr^y+Dyhv+i)]} 

V 

V - 

^(4-3{l-r3 + 4ro
2 + E^_(4ro

2..2v(l+ro
2) + v2(l-ro

2) r^+TT 

+ 0(Y  '.(l-r^n (VIE. 12) 



TRi89 

gaussian model; 

•81 

R(t)-I   _ _ 
~=Z r 

T(v+i) 
out * gauss    2(v + 1)' 

x[(4-2 

32Y^i-r2(2+1)/nv+i)] 

+ 0(Y"2,(l-ro
2)2) (VIII. 13) 

These are also larger when the noise is nongaussian, so that finally we 

have the result that the variance is always larger with nongaussian noise 

than with gaussian noise when no signal is present. 

This same approach can be used to find the change in the variance 

when nongaussian noise is present and the signal is strong. The power 

ratio is now 

o     d-c 
2 

v 

2P1 
_,Zv2+3v+8    ^40     7v2-12v+14^,   -2     -2, 

—* + 5 7 +0(p     ,y     ) "5F 6pv|j 
(VIII. 14) 

The nongaussian part is negative between v = 0.45 and v =  1.26.    Since the 

nongaussian part of r       (t) for the linear noise model is of order p     , the 

power ratio alone will determine the sign of the change in the variance. 

So  with these   two noise models, the zeros of Eq    (VIII. 14) correspond 

rather closely to those of r       (t) so that when v is small, the nongaussian 

variance is more; when v is near one, it is less; and when v i8 two or 

more, it is greater again.    Finding more exact boundaries by this method 

isnotworth while since they are already known from the first part of this 

appendix. 
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